Let V denote an r -dimensional vector space over a finite field. For an m-dimensional subspace U of V over a subfield., assume that dim\cap U is at least 2 for each nonzero vector. v. If the estension degree n is smaller than the size of the subfield, then we prove the existence of an integer 1
On the maximum field of linearity of linear sets / Csajbok, B.; Marino, G.; Pepe, V.. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 56:11(2024), pp. 3300-3315. [10.1112/blms.13133]
On the maximum field of linearity of linear sets
Pepe V.
2024
Abstract
Let V denote an r -dimensional vector space over a finite field. For an m-dimensional subspace U of V over a subfield., assume that dim\cap U is at least 2 for each nonzero vector. v. If the estension degree n is smaller than the size of the subfield, then we prove the existence of an integer 1File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.