We study the time evolution of an incompressible fluid with axial symmetry without swirl when the vorticity is sharply concentrated on N annuli of radii of the order of r0 and thickness ε. We prove that when r0 = | log ε|α , α > 1, the vorticity field of the fluid converges for ε → 0 to the point vortex model, in an interval of time which diverges as log | log ε|. This generalizes previous result by Cavallaro and Marchioro in (J Math Phys 62:053102, 2021), that assumed α > 2 and in which the convergence was proved for short times only.

Long Time Evolution of Concentrated Vortex Rings with Large Radius / Butta', Paolo; Cavallaro, Guido; Marchioro, Carlo. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 191:12(2024). [10.1007/s10955-024-03381-x]

Long Time Evolution of Concentrated Vortex Rings with Large Radius

Butta', Paolo
;
Cavallaro, Guido;Marchioro, Carlo
2024

Abstract

We study the time evolution of an incompressible fluid with axial symmetry without swirl when the vorticity is sharply concentrated on N annuli of radii of the order of r0 and thickness ε. We prove that when r0 = | log ε|α , α > 1, the vorticity field of the fluid converges for ε → 0 to the point vortex model, in an interval of time which diverges as log | log ε|. This generalizes previous result by Cavallaro and Marchioro in (J Math Phys 62:053102, 2021), that assumed α > 2 and in which the convergence was proved for short times only.
2024
Incompressible Euler flow; vortex rings; point vortex model; axial symmetry
01 Pubblicazione su rivista::01a Articolo in rivista
Long Time Evolution of Concentrated Vortex Rings with Large Radius / Butta', Paolo; Cavallaro, Guido; Marchioro, Carlo. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 191:12(2024). [10.1007/s10955-024-03381-x]
File allegati a questo prodotto
File Dimensione Formato  
Buttà_Long-time_2024.pdf

solo gestori archivio

Note: File PDF
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 449.27 kB
Formato Adobe PDF
449.27 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1729621
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact