We show the properness of the moduli stack of stable surfaces over \mathbb{Z}\left[ {1/30} \right], assuming the locally-stable reduction conjecture for stable surfaces. This relies on a local Kawamata–Viehweg vanishing theorem for 3-dimensional log canonical singularities at closed point of characteristic p \ne 2,3 and 5, which are not log canonical centres.
On the properness of the moduli space of stable surfaces over $\mathbb{Z}$ [1/30] / Arvidsson, Emelie; Bernasconi, Fabio; Patakfalvi, Zsolt. - In: MODULI. - ISSN 2949-7647. - (2024). [10.1112/mod.2024.1]
On the properness of the moduli space of stable surfaces over $\mathbb{Z}$ [1/30]
Fabio Bernasconi
;Zsolt Patakfalvi
2024
Abstract
We show the properness of the moduli stack of stable surfaces over \mathbb{Z}\left[ {1/30} \right], assuming the locally-stable reduction conjecture for stable surfaces. This relies on a local Kawamata–Viehweg vanishing theorem for 3-dimensional log canonical singularities at closed point of characteristic p \ne 2,3 and 5, which are not log canonical centres.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Arvidsson_On-the-properness_2024.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
793.13 kB
Formato
Adobe PDF
|
793.13 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


