We show the properness of the moduli stack of stable surfaces over \mathbb{Z}\left[ {1/30} \right], assuming the locally-stable reduction conjecture for stable surfaces. This relies on a local Kawamata–Viehweg vanishing theorem for 3-dimensional log canonical singularities at closed point of characteristic p \ne 2,3 and 5, which are not log canonical centres.

On the properness of the moduli space of stable surfaces over $\mathbb{Z}$ [1/30] / Arvidsson, Emelie; Bernasconi, Fabio; Patakfalvi, Zsolt. - In: MODULI. - ISSN 2949-7647. - (2024). [10.1112/mod.2024.1]

On the properness of the moduli space of stable surfaces over $\mathbb{Z}$ [1/30]

Fabio Bernasconi
;
Zsolt Patakfalvi
2024

Abstract

We show the properness of the moduli stack of stable surfaces over \mathbb{Z}\left[ {1/30} \right], assuming the locally-stable reduction conjecture for stable surfaces. This relies on a local Kawamata–Viehweg vanishing theorem for 3-dimensional log canonical singularities at closed point of characteristic p \ne 2,3 and 5, which are not log canonical centres.
2024
singularities; vanishing theorems; moduli of stable varieties; positive and mixed characteristic
01 Pubblicazione su rivista::01a Articolo in rivista
On the properness of the moduli space of stable surfaces over $\mathbb{Z}$ [1/30] / Arvidsson, Emelie; Bernasconi, Fabio; Patakfalvi, Zsolt. - In: MODULI. - ISSN 2949-7647. - (2024). [10.1112/mod.2024.1]
File allegati a questo prodotto
File Dimensione Formato  
Arvidsson_On-the-properness_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 793.13 kB
Formato Adobe PDF
793.13 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1729485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact