We establish a quasi-monotonicity formula for an intrinsic frequency function related to solutions to thin obstacle problems with zero obstacle driven by quadratic energies with Sobolev W1,p coefficients, where p is bigger than the space dimension. From this, we deduce several regularity and structural properties of the corresponding free boundaries at those distinguished points with finite order of contact with the obstacle. In particular, we prove the rectifiability and the local finiteness of the Minkowski content of the whole free boundary in the case of Lipschitz coefficients.

On the free boundary for thin obstacle problems with Sobolev variable coefficients / Andreucci, Giovanna; Focardi, Matteo; Spadaro, Emanuele. - In: INTERFACES AND FREE BOUNDARIES. - ISSN 1463-9963. - (2024). [10.4171/ifb/537]

On the free boundary for thin obstacle problems with Sobolev variable coefficients

Andreucci, Giovanna;Focardi, Matteo
;
Spadaro, Emanuele
2024

Abstract

We establish a quasi-monotonicity formula for an intrinsic frequency function related to solutions to thin obstacle problems with zero obstacle driven by quadratic energies with Sobolev W1,p coefficients, where p is bigger than the space dimension. From this, we deduce several regularity and structural properties of the corresponding free boundaries at those distinguished points with finite order of contact with the obstacle. In particular, we prove the rectifiability and the local finiteness of the Minkowski content of the whole free boundary in the case of Lipschitz coefficients.
2024
Thin obstacle problem, free boundary, Sobolev coefficients
01 Pubblicazione su rivista::01a Articolo in rivista
On the free boundary for thin obstacle problems with Sobolev variable coefficients / Andreucci, Giovanna; Focardi, Matteo; Spadaro, Emanuele. - In: INTERFACES AND FREE BOUNDARIES. - ISSN 1463-9963. - (2024). [10.4171/ifb/537]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1729463
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact