We establish a quasi-monotonicity formula for an intrinsic frequency function related to solutions to thin obstacle problems with zero obstacle driven by quadratic energies with Sobolev W1,p coefficients, where p is bigger than the space dimension. From this, we deduce several regularity and structural properties of the corresponding free boundaries at those distinguished points with finite order of contact with the obstacle. In particular, we prove the rectifiability and the local finiteness of the Minkowski content of the whole free boundary in the case of Lipschitz coefficients.

On the free boundary for thin obstacle problems with Sobolev variable coefficients / Andreucci, Giovanna; Focardi, Matteo; Spadaro, Emanuele. - In: INTERFACES AND FREE BOUNDARIES. - ISSN 1463-9963. - (2024). [10.4171/ifb/537]

On the free boundary for thin obstacle problems with Sobolev variable coefficients

Andreucci, Giovanna;Focardi, Matteo
;
Spadaro, Emanuele
2024

Abstract

We establish a quasi-monotonicity formula for an intrinsic frequency function related to solutions to thin obstacle problems with zero obstacle driven by quadratic energies with Sobolev W1,p coefficients, where p is bigger than the space dimension. From this, we deduce several regularity and structural properties of the corresponding free boundaries at those distinguished points with finite order of contact with the obstacle. In particular, we prove the rectifiability and the local finiteness of the Minkowski content of the whole free boundary in the case of Lipschitz coefficients.
2024
Thin obstacle problem, free boundary, Sobolev coefficients
01 Pubblicazione su rivista::01a Articolo in rivista
On the free boundary for thin obstacle problems with Sobolev variable coefficients / Andreucci, Giovanna; Focardi, Matteo; Spadaro, Emanuele. - In: INTERFACES AND FREE BOUNDARIES. - ISSN 1463-9963. - (2024). [10.4171/ifb/537]
File allegati a questo prodotto
File Dimensione Formato  
Andreucci_Boundary_2024.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 500.21 kB
Formato Adobe PDF
500.21 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1729463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact