Promptly identifying procedural errors from egocentric videos in an online setting is highly challenging and valuable for detecting mistakes as soon as they happen. This capability has a wide range of applications across various fields, such as manufacturing and healthcare. The nature of procedural mistakes is open-set since novel types of failures might occur, which calls for one-class classifiers trained on correctly executed procedures. However, no technique can currently detect open-set procedural mistakes online. We propose PREGO, the first online one-class classification model for mistake detection in PRocedural EGOcentric videos. PREGO is based on an online action recognition component to model the current action, and a symbolic reasoning module to predict the next actions. Mistake detection is performed by comparing the recognized current action with the expected future one. We evaluate PREGO on two procedural egocentric video datasets, Assembly101 and Epic-tent, which we adapt for online benchmarking of procedural mistake detection to establish suitable benchmarks, thus defining the Assembly101-O and Epic-tent-O datasets, respectively. The code is available at https://github.com/alef/abo/PREGO.

PREGO: Online Mistake Detection in PRocedural EGOcentric Videos / Flaborea, A.; D'Amely Di Melendugno, G. M.; Plini, L.; Scofano, L.; De Matteis, E.; Furnari, A.; Farinella, G. M.; Galasso, F.. - (2024), pp. 18483-18492. (Intervento presentato al convegno IEEE Conference on Computer Vision and Pattern Recognition tenutosi a Seattle; United States of America) [10.1109/CVPR52733.2024.01749].

PREGO: Online Mistake Detection in PRocedural EGOcentric Videos

Flaborea A.
;
D'Amely Di Melendugno G. M.
;
Plini L.
;
Scofano L.
;
De Matteis E.
;
Galasso F.
2024

Abstract

Promptly identifying procedural errors from egocentric videos in an online setting is highly challenging and valuable for detecting mistakes as soon as they happen. This capability has a wide range of applications across various fields, such as manufacturing and healthcare. The nature of procedural mistakes is open-set since novel types of failures might occur, which calls for one-class classifiers trained on correctly executed procedures. However, no technique can currently detect open-set procedural mistakes online. We propose PREGO, the first online one-class classification model for mistake detection in PRocedural EGOcentric videos. PREGO is based on an online action recognition component to model the current action, and a symbolic reasoning module to predict the next actions. Mistake detection is performed by comparing the recognized current action with the expected future one. We evaluate PREGO on two procedural egocentric video datasets, Assembly101 and Epic-tent, which we adapt for online benchmarking of procedural mistake detection to establish suitable benchmarks, thus defining the Assembly101-O and Epic-tent-O datasets, respectively. The code is available at https://github.com/alef/abo/PREGO.
2024
IEEE Conference on Computer Vision and Pattern Recognition
online mistake detection; procedural learning; in-context learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
PREGO: Online Mistake Detection in PRocedural EGOcentric Videos / Flaborea, A.; D'Amely Di Melendugno, G. M.; Plini, L.; Scofano, L.; De Matteis, E.; Furnari, A.; Farinella, G. M.; Galasso, F.. - (2024), pp. 18483-18492. (Intervento presentato al convegno IEEE Conference on Computer Vision and Pattern Recognition tenutosi a Seattle; United States of America) [10.1109/CVPR52733.2024.01749].
File allegati a questo prodotto
File Dimensione Formato  
Flaborea_PREGO_2024.pdf

accesso aperto

Note: DOI: 10.1109/CVPR52733.2024.01749 - https://openaccess.thecvf.com/content/CVPR2024/papers/Flaborea_PREGO_Online_Mistake_Detection_in_PRocedural_EGOcentric_Videos_CVPR_2024_paper.pdf
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 718.89 kB
Formato Adobe PDF
718.89 kB Adobe PDF
Flaborea_PREGO-Online-Mistake_2024.pdf

solo gestori archivio

Note: DOI: 10.1109/CVPR52733.2024.01749
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 621.11 kB
Formato Adobe PDF
621.11 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1728973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact