LandSin, a web application with a back-end database, is developed for global land value estimation by combining polynomial regression and differential privacy models. Leveraging local amenities and property details, LandSin offers key features, e.g., accurate land value and price predictions, affordability and habitability analysis, and terrain insights using Google Maps. In addition, it facilitates useful infographics, helping stakeholders identify economically deprived but habitable areas for balanced regional development. It also supports real estate agencies and community planners in finding habitable land by making data-driven decisions regarding land investments and regional planning, ensuring informed and strategic choices.

LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond[Formula presented] / Sabari, A.; Hasan, I.; Alyami, S. A.; Lio, P.; Ali, M. S.; Moni, M. A.; Azad, A. K. M.. - In: SOFTWARE IMPACTS. - ISSN 2665-9638. - 22:(2024). [10.1016/j.simpa.2024.100718]

LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond[Formula presented]

Lio P.
;
2024

Abstract

LandSin, a web application with a back-end database, is developed for global land value estimation by combining polynomial regression and differential privacy models. Leveraging local amenities and property details, LandSin offers key features, e.g., accurate land value and price predictions, affordability and habitability analysis, and terrain insights using Google Maps. In addition, it facilitates useful infographics, helping stakeholders identify economically deprived but habitable areas for balanced regional development. It also supports real estate agencies and community planners in finding habitable land by making data-driven decisions regarding land investments and regional planning, ensuring informed and strategic choices.
2024
Differential privacy; Land value estimation; Machine learning; Property market trends; Urban planning
01 Pubblicazione su rivista::01a Articolo in rivista
LandSin: A differential ML and google API-enabled web server for real-time land insights and beyond[Formula presented] / Sabari, A.; Hasan, I.; Alyami, S. A.; Lio, P.; Ali, M. S.; Moni, M. A.; Azad, A. K. M.. - In: SOFTWARE IMPACTS. - ISSN 2665-9638. - 22:(2024). [10.1016/j.simpa.2024.100718]
File allegati a questo prodotto
File Dimensione Formato  
Sabari_LandSin_2024.pdf

accesso aperto

Note: https://doi.org/10.1016/j.simpa.2024.100718
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 901.14 kB
Formato Adobe PDF
901.14 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1728760
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact