We propose a new semi-Lagrangian scheme for the game ∞-Laplacian. We demonstrate the convergence of the scheme to the viscosity solution of the given problem, showing its consistency, monotonicity, and stability. The proof of this result is established following the Barles-Souganidis analysis. This analysis assumes convergence at the boundary in a strong sense and is applied to our proposed scheme, augmented with an artificial viscosity term.

A Convergent Semi-Lagrangian Scheme for the Game ∞-Laplacian / Carlini, E.; Tozza, S.. - In: DYNAMIC GAMES AND APPLICATIONS. - ISSN 2153-0785. - (2024). [10.1007/s13235-024-00596-1]

A Convergent Semi-Lagrangian Scheme for the Game ∞-Laplacian

Carlini E.
;
2024

Abstract

We propose a new semi-Lagrangian scheme for the game ∞-Laplacian. We demonstrate the convergence of the scheme to the viscosity solution of the given problem, showing its consistency, monotonicity, and stability. The proof of this result is established following the Barles-Souganidis analysis. This analysis assumes convergence at the boundary in a strong sense and is applied to our proposed scheme, augmented with an artificial viscosity term.
2024
35D40; 35J25; 65N06; 65N12; Convergence analysis; game ∞-Laplacian; semi-Lagrangian scheme; viscosity solutions
01 Pubblicazione su rivista::01a Articolo in rivista
A Convergent Semi-Lagrangian Scheme for the Game ∞-Laplacian / Carlini, E.; Tozza, S.. - In: DYNAMIC GAMES AND APPLICATIONS. - ISSN 2153-0785. - (2024). [10.1007/s13235-024-00596-1]
File allegati a questo prodotto
File Dimensione Formato  
Carlini_A-convergent-semi-Lagrangian_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 353.87 kB
Formato Adobe PDF
353.87 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1727616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact