The aim of this paper is to deal with the asymptotics of generalized Orlicz norms when the lower growth rate tends to infinity. We generalize results proven by Bertazzoni, Harjulehto and Hästö in Journ. of Math. Anal. and Appl. (2024) for integral type energies (in generalized Orlicz spaces), considering milder convexity assumptions. Γ-convergence results and related representation theorems in terms of L∞ functionals are proven. The convexity hypotheses are completely removed in the variable exponent setting, thus extending the results in Eleuteri-Prinari in Nonlinear Anal. Real. World Appl. (2021) and Prinari-Zappale in JOTA (2020).

Approximation of L∞ functionals with generalized Orlicz norms / Bertazzoni, Giacomo.; Eleuteri, Michela.; Zappale, Elvira.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - (2024). [10.1007/s10231-024-01511-6]

Approximation of L∞ functionals with generalized Orlicz norms

Zappale Elvira.
2024

Abstract

The aim of this paper is to deal with the asymptotics of generalized Orlicz norms when the lower growth rate tends to infinity. We generalize results proven by Bertazzoni, Harjulehto and Hästö in Journ. of Math. Anal. and Appl. (2024) for integral type energies (in generalized Orlicz spaces), considering milder convexity assumptions. Γ-convergence results and related representation theorems in terms of L∞ functionals are proven. The convexity hypotheses are completely removed in the variable exponent setting, thus extending the results in Eleuteri-Prinari in Nonlinear Anal. Real. World Appl. (2021) and Prinari-Zappale in JOTA (2020).
2024
26B25; 46E30; 46N10; 49J45; Generalized convexity; L; p; -type approximation; L; ∞; - variational problems; Musielak-Orlicz spaces; Supremal functionals
01 Pubblicazione su rivista::01a Articolo in rivista
Approximation of L∞ functionals with generalized Orlicz norms / Bertazzoni, Giacomo.; Eleuteri, Michela.; Zappale, Elvira.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - (2024). [10.1007/s10231-024-01511-6]
File allegati a questo prodotto
File Dimensione Formato  
Bertazzoni_Approximation_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 478.56 kB
Formato Adobe PDF
478.56 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1727507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact