Two methods based on the Forward Imputation approach are implemented for the imputation of quantitative missing data. One method alternates Nearest Neighbour Imputation and Principal Component Analysis (function 'ForImp.PCA'), the other uses Nearest Neighbour Imputation with the Mahalanobis distance (function 'ForImp.Mahala').
GenForImp: The Forward Imputation : A Sequential Distance-Based Approach for Imputing Missing Data / Solaro, N.; Barbiero, A.; Manzi, G.; Ferrari, P. A.. - (2015).
GenForImp: The Forward Imputation : A Sequential Distance-Based Approach for Imputing Missing Data
G. Manzi;
2015
Abstract
Two methods based on the Forward Imputation approach are implemented for the imputation of quantitative missing data. One method alternates Nearest Neighbour Imputation and Principal Component Analysis (function 'ForImp.PCA'), the other uses Nearest Neighbour Imputation with the Mahalanobis distance (function 'ForImp.Mahala').File allegati a questo prodotto
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.