We consider the biases that can arise in bias elicitation when expert assessors make random errors. After presenting a general framework of the phenomenon, we illustrate it for two examples: the case of omitting variables bias and that of the bias arising in adjusting relative risks. Results show that, even when assessors’ elicitations of bias have desirable properties, the non- linear nature of biases can lead to elicitations of bias that are, themselves, biased. We show the corrections which can be made to remove this bias and discuss the implications for the applied literature which employs these methods.

Biases in Bias Elicitation / Manzi, G.; Forster, M.. - In: COMMUNICATIONS IN STATISTICS. THEORY AND METHODS. - ISSN 0361-0926. - (2018). [10.1080/03610926.2018.1500598]

Biases in Bias Elicitation

G. Manzi;
2018

Abstract

We consider the biases that can arise in bias elicitation when expert assessors make random errors. After presenting a general framework of the phenomenon, we illustrate it for two examples: the case of omitting variables bias and that of the bias arising in adjusting relative risks. Results show that, even when assessors’ elicitations of bias have desirable properties, the non- linear nature of biases can lead to elicitations of bias that are, themselves, biased. We show the corrections which can be made to remove this bias and discuss the implications for the applied literature which employs these methods.
2018
Bias assessment; expert elicitation; elicitation scales; omitted variable bias; relative risk
01 Pubblicazione su rivista::01a Articolo in rivista
Biases in Bias Elicitation / Manzi, G.; Forster, M.. - In: COMMUNICATIONS IN STATISTICS. THEORY AND METHODS. - ISSN 0361-0926. - (2018). [10.1080/03610926.2018.1500598]
File allegati a questo prodotto
File Dimensione Formato  
ManziForster_CIS_REV1_No Red Text.pdf

solo gestori archivio

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Contatta l'autore
Manzi_Biases_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1727306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact