In this note we prove uniqueness of the critical point for positive solutions of elliptic problems in bounded planar domains: we first examine the Poisson problem - increment u = f (x, y) finding a geometric condition involving the curvature of the boundary and the normal derivative of f on the boundary to ensure uniqueness of the critical point. In the second part we consider stable solutions of the nonlinear problem - increment u = f(u) in perturbation of convex domains.

On the shape of solutions to elliptic equations in possibly non convex planar domains / Battaglia, Luca; De Regibus, Fabio; Grossi, Massimo. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 17:4(2024), pp. 1588-1598. [10.3934/dcdss.2023194]

On the shape of solutions to elliptic equations in possibly non convex planar domains

Grossi, Massimo
Membro del Collaboration Group
2024

Abstract

In this note we prove uniqueness of the critical point for positive solutions of elliptic problems in bounded planar domains: we first examine the Poisson problem - increment u = f (x, y) finding a geometric condition involving the curvature of the boundary and the normal derivative of f on the boundary to ensure uniqueness of the critical point. In the second part we consider stable solutions of the nonlinear problem - increment u = f(u) in perturbation of convex domains.
2024
Critical points; elliptic equations; Poisson problem; convex domains; conformal maps
01 Pubblicazione su rivista::01a Articolo in rivista
On the shape of solutions to elliptic equations in possibly non convex planar domains / Battaglia, Luca; De Regibus, Fabio; Grossi, Massimo. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 17:4(2024), pp. 1588-1598. [10.3934/dcdss.2023194]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1727264
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact