In this note we prove uniqueness of the critical point for positive solutions of elliptic problems in bounded planar domains: we first examine the Poisson problem - increment u = f (x, y) finding a geometric condition involving the curvature of the boundary and the normal derivative of f on the boundary to ensure uniqueness of the critical point. In the second part we consider stable solutions of the nonlinear problem - increment u = f(u) in perturbation of convex domains.

On the shape of solutions to elliptic equations in possibly non convex planar domains / Battaglia, Luca; De Regibus, Fabio; Grossi, Massimo. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 17:4(2024), pp. 1588-1598. [10.3934/dcdss.2023194]

On the shape of solutions to elliptic equations in possibly non convex planar domains

Grossi, Massimo
Membro del Collaboration Group
2024

Abstract

In this note we prove uniqueness of the critical point for positive solutions of elliptic problems in bounded planar domains: we first examine the Poisson problem - increment u = f (x, y) finding a geometric condition involving the curvature of the boundary and the normal derivative of f on the boundary to ensure uniqueness of the critical point. In the second part we consider stable solutions of the nonlinear problem - increment u = f(u) in perturbation of convex domains.
2024
Critical points; elliptic equations; Poisson problem; convex domains; conformal maps
01 Pubblicazione su rivista::01a Articolo in rivista
On the shape of solutions to elliptic equations in possibly non convex planar domains / Battaglia, Luca; De Regibus, Fabio; Grossi, Massimo. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 17:4(2024), pp. 1588-1598. [10.3934/dcdss.2023194]
File allegati a questo prodotto
File Dimensione Formato  
Battaglia_shape_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 353.88 kB
Formato Adobe PDF
353.88 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1727264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact