We consider a gas of bosons interacting through a hard-sphere potential with radius a in the thermodynamic limit. We derive an upper bound for the ground state energy per particle at low density. Our bound captures the leading term 4πρa and shows that corrections are smaller than Cρa(ρa3)1/2, for a sufficiently large constant C > 0. In combination with a known lower bound, our result implies that the first sub-leading term to the ground state energy of a dilute gas of hard spheres is, in fact, of the order ρa(ρa3)1/2, in agreement with the Lee–Huang–Yang prediction.

Upper Bound for the Ground State Energy of a Dilute Bose Gas of Hard Spheres / Basti, Giulia; Cenatiempo, Serena; Giuliani, Alessandro; Olgiati, Alessandro; Pasqualetti &, Giulio; Schlein, Benjamin. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 248(2024). [10.1007/s00205-024-02049-w]

Upper Bound for the Ground State Energy of a Dilute Bose Gas of Hard Spheres

Giulia Basti;Serena Cenatiempo
;
Alessandro Olgiati;
2024

Abstract

We consider a gas of bosons interacting through a hard-sphere potential with radius a in the thermodynamic limit. We derive an upper bound for the ground state energy per particle at low density. Our bound captures the leading term 4πρa and shows that corrections are smaller than Cρa(ρa3)1/2, for a sufficiently large constant C > 0. In combination with a known lower bound, our result implies that the first sub-leading term to the ground state energy of a dilute gas of hard spheres is, in fact, of the order ρa(ρa3)1/2, in agreement with the Lee–Huang–Yang prediction.
2024
interacting bosons; thermodynamic limit; ground state energy expansion; hard sphere interaction; hard core interaction
01 Pubblicazione su rivista::01a Articolo in rivista
Upper Bound for the Ground State Energy of a Dilute Bose Gas of Hard Spheres / Basti, Giulia; Cenatiempo, Serena; Giuliani, Alessandro; Olgiati, Alessandro; Pasqualetti &, Giulio; Schlein, Benjamin. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 248(2024). [10.1007/s00205-024-02049-w]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1727179
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact