Gradient-based attacks are a primary tool to evaluate robustness of machine-learning models. However, many attacks tend to provide overly-optimistic evaluations as they use fixed loss functions, optimizers, step-size schedulers, and default hyperparameters. In this work, we tackle these limitations by proposing a parametric variation of the well-known fast minimum-norm attack algorithm, whose loss, optimizer, step-size scheduler, and hyperparameters can be dynamically adjusted. We re-evaluate 12 robust models, showing that our attack finds smaller adversarial perturbations without requiring any additional tuning. This also enables reporting adversarial robustness as a function of the perturbation budget, providing a more complete evaluation than that offered by fixed-budget attacks, while remaining efficient. We release our open-source code at https://github.com/pralab/HO-FMN.
HO-FMN: Hyperparameter optimization for fast minimum-norm attacks / Mura, Raffaele; Floris, Giuseppe; Scionis, Luca; Piras, Giorgio; Pintor, Maura; Demontis, Ambra; Giacinto, Giorgio; Biggio, Battista; Roli, Fabio. - In: NEUROCOMPUTING. - ISSN 0925-2312. - 616:February 2025(2025). [10.1016/j.neucom.2024.128918]
HO-FMN: Hyperparameter optimization for fast minimum-norm attacks
Luca ScionisCo-primo
;Giorgio PirasSecondo
;
2025
Abstract
Gradient-based attacks are a primary tool to evaluate robustness of machine-learning models. However, many attacks tend to provide overly-optimistic evaluations as they use fixed loss functions, optimizers, step-size schedulers, and default hyperparameters. In this work, we tackle these limitations by proposing a parametric variation of the well-known fast minimum-norm attack algorithm, whose loss, optimizer, step-size scheduler, and hyperparameters can be dynamically adjusted. We re-evaluate 12 robust models, showing that our attack finds smaller adversarial perturbations without requiring any additional tuning. This also enables reporting adversarial robustness as a function of the perturbation budget, providing a more complete evaluation than that offered by fixed-budget attacks, while remaining efficient. We release our open-source code at https://github.com/pralab/HO-FMN.| File | Dimensione | Formato | |
|---|---|---|---|
|
Mura_postprint_HO-FMN-Hyperparameter_2024.pdf
solo gestori archivio
Note: https://doi.org/10.1016/j.neucom.2024.128918
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Contatta l'autore |
|
Mura_preprint_HO-FMN-Hyperparameter.pdf
accesso aperto
Note: https://doi.org/10.1016/j.neucom.2024.128918
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | |
|
Mura_HO-FMN-Hyperparameter_2025.pdf
accesso aperto
Note: https://doi.org/10.1016/j.neucom.2024.128918
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.62 MB
Formato
Adobe PDF
|
2.62 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


