Starting from first principles, we study radiative transfer by new feebly-interacting bosons (FIBs) such as axions, axion-like particles (ALPs), dark photons, and others. Our key simplification is to include only boson emission or absorption (including decay), but not scattering between different modes of the radiation field. Based on a given distribution of temperature and FIB absorption rate in a star, we derive explicit volume-integral expressions for the boson luminosity, reaching from the free-streaming to the strong-trapping limit. The latter is seen explicitly to correspond to quasi-thermal emission from a "FIB sphere" according to the Stefan-Boltzmann law. Our results supersede expressions and approximations found in the recent literature on FIB emission from a supernova core and, for radiatively unstable FIBs, provide explicit expressions for the nonlocal ("ballistic") transfer of energy recently discussed in horizontal-branch stars.

Radiative transfer in stars by feebly interacting bosons / Caputo, Andrea; Raffelt, Georg; Vitagliano, Edoardo. - In: JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. - ISSN 1475-7516. - 2022:08(2022). [10.1088/1475-7516/2022/08/045]

Radiative transfer in stars by feebly interacting bosons

Caputo, Andrea;
2022

Abstract

Starting from first principles, we study radiative transfer by new feebly-interacting bosons (FIBs) such as axions, axion-like particles (ALPs), dark photons, and others. Our key simplification is to include only boson emission or absorption (including decay), but not scattering between different modes of the radiation field. Based on a given distribution of temperature and FIB absorption rate in a star, we derive explicit volume-integral expressions for the boson luminosity, reaching from the free-streaming to the strong-trapping limit. The latter is seen explicitly to correspond to quasi-thermal emission from a "FIB sphere" according to the Stefan-Boltzmann law. Our results supersede expressions and approximations found in the recent literature on FIB emission from a supernova core and, for radiatively unstable FIBs, provide explicit expressions for the nonlocal ("ballistic") transfer of energy recently discussed in horizontal-branch stars.
2022
stars; axions; supernovas
01 Pubblicazione su rivista::01a Articolo in rivista
Radiative transfer in stars by feebly interacting bosons / Caputo, Andrea; Raffelt, Georg; Vitagliano, Edoardo. - In: JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. - ISSN 1475-7516. - 2022:08(2022). [10.1088/1475-7516/2022/08/045]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1726891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact