: Nonrelativistic axions can be efficiently produced in the polar caps of pulsars, resulting in the formation of a dense cloud of gravitationally bound axions. Here, we investigate the interplay between such an axion cloud and the electrodynamics in the pulsar magnetosphere, focusing specifically on the dynamics in the polar caps, where the impact of the axion cloud is expected to be most pronounced. For sufficiently light axions m_{a}≲10^{-7} eV, we show that the axion cloud can occasionally screen the local electric field responsible for particle acceleration and pair production, inducing a periodic nulling of the pulsar's intrinsic radio emission. At larger axion masses, the small-scale fluctuations in the axion field tend to suppress the backreaction of the axion on the electrodynamics; however, we point out that the incoherent oscillations of the axion in short-lived regions of vacuum near the neutron star surface can produce a narrow radio line, which provides a complementary source of radio emission to the plasma-resonant emission processes identified in previous work. While this Letter focuses on the leading order correction to pair production in the magnetosphere, we speculate that there can exist dramatic deviations in the electrodynamics of these systems when the axion backreaction becomes nonlinear.
Pulsar nulling and vacuum radio emission from axion clouds / Caputo, Andrea; Witte, Samuel J.; Philippov, Alexander A.; Jacobson, Ted. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 133:16(2024). [10.1103/physrevlett.133.161001]
Pulsar nulling and vacuum radio emission from axion clouds
Caputo, Andrea
;
2024
Abstract
: Nonrelativistic axions can be efficiently produced in the polar caps of pulsars, resulting in the formation of a dense cloud of gravitationally bound axions. Here, we investigate the interplay between such an axion cloud and the electrodynamics in the pulsar magnetosphere, focusing specifically on the dynamics in the polar caps, where the impact of the axion cloud is expected to be most pronounced. For sufficiently light axions m_{a}≲10^{-7} eV, we show that the axion cloud can occasionally screen the local electric field responsible for particle acceleration and pair production, inducing a periodic nulling of the pulsar's intrinsic radio emission. At larger axion masses, the small-scale fluctuations in the axion field tend to suppress the backreaction of the axion on the electrodynamics; however, we point out that the incoherent oscillations of the axion in short-lived regions of vacuum near the neutron star surface can produce a narrow radio line, which provides a complementary source of radio emission to the plasma-resonant emission processes identified in previous work. While this Letter focuses on the leading order correction to pair production in the magnetosphere, we speculate that there can exist dramatic deviations in the electrodynamics of these systems when the axion backreaction becomes nonlinear.File | Dimensione | Formato | |
---|---|---|---|
Caputo_Pulsar-nulling_2024.pdf
accesso aperto
Note: Articolo in rivista
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
761.63 kB
Formato
Adobe PDF
|
761.63 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.