Functional link adaptive filters (FLAFs) utilize expansion blocks to nonlinearly augment the input signal to a higher dimensional space, after which an adaptive weight algorithm is applied. These filters are useful for nonlinear system identification tasks, as they can update a large number of coefficients to effectively model the nonlinear system, even when the degree of nonlinearity is not comprehended in advance. However, in many cases, not all of the weights in the nonlinear and linear filter will significantly contribute to the identified model. This paper introduces a novel class of FLAFs based on the nearest Kronecker product (NKP) decomposition. Utilizing the inherent low-rank nature of weight vectors in many scenarios, our approach aims to improve convergence performance and tracking capabilities compared to traditional FLAFs. Additionally, we address noise mitigation challenges, particularly in nonlinear acoustic echo cancellation scenarios. By incorporating NKP decomposition, our proposed FLAFs offer promising solutions for enhancing adaptability and performance in nonlinear system identification, making them valuable tools in practical applications.

Efficient functional link adaptive filters based on nearest Kronecker product decomposition / Nezamdoust, A.; Huemer, M.; Uncini, A.; Comminiello, D.. - (2024), pp. 886-890. (Intervento presentato al convegno 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 tenutosi a Seoul; Korea) [10.1109/ICASSP48485.2024.10447936].

Efficient functional link adaptive filters based on nearest Kronecker product decomposition

Nezamdoust A.
Writing – Original Draft Preparation
;
Uncini A.
Supervision
;
Comminiello D.
Supervision
2024

Abstract

Functional link adaptive filters (FLAFs) utilize expansion blocks to nonlinearly augment the input signal to a higher dimensional space, after which an adaptive weight algorithm is applied. These filters are useful for nonlinear system identification tasks, as they can update a large number of coefficients to effectively model the nonlinear system, even when the degree of nonlinearity is not comprehended in advance. However, in many cases, not all of the weights in the nonlinear and linear filter will significantly contribute to the identified model. This paper introduces a novel class of FLAFs based on the nearest Kronecker product (NKP) decomposition. Utilizing the inherent low-rank nature of weight vectors in many scenarios, our approach aims to improve convergence performance and tracking capabilities compared to traditional FLAFs. Additionally, we address noise mitigation challenges, particularly in nonlinear acoustic echo cancellation scenarios. By incorporating NKP decomposition, our proposed FLAFs offer promising solutions for enhancing adaptability and performance in nonlinear system identification, making them valuable tools in practical applications.
2024
49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
acoustic echo cancellation; functional links; nearest Kronecker product; nonlinear adaptive filters
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Efficient functional link adaptive filters based on nearest Kronecker product decomposition / Nezamdoust, A.; Huemer, M.; Uncini, A.; Comminiello, D.. - (2024), pp. 886-890. (Intervento presentato al convegno 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 tenutosi a Seoul; Korea) [10.1109/ICASSP48485.2024.10447936].
File allegati a questo prodotto
File Dimensione Formato  
Nezamdoust_Efficient_2024.pdf

solo gestori archivio

Note: Camera-Ready version
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 965.06 kB
Formato Adobe PDF
965.06 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1726857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact