Shadows in videos are difficult to detect because of the large shadow deformation between frames. In this work, we argue that accounting for shadow deformation is essential when designing a video shadow detection method. To this end, we introduce the shadow deformation attention trajectory (SODA), a new type of video self-attention module, specially designed to handle the large shadow deformations in videos. Moreover, we present a new shadow contrastive learning mechanism (SCOTCH) which aims at guiding the network to learn a unified shadow representation from massive positive shadow pairs across different videos. We demonstrate empirically the effectiveness of our two contributions in an ablation study. Furthermore, we show that SCOTCH and SODA significantly outperforms existing techniques for video shadow detection. Code is available at the project page: https://lihaoliu-cambridge.github.io/scotch-and-soda/

SCOTCH and SODA: A Transformer Video Shadow Detection Framework / Liu, L.; Prost, J.; Zhu, L.; Papadakis, N.; Lio, P.; Schonlieb, C. -B.; Aviles-Rivero, A. I.. - 2023-:(2023), pp. 10449-10458. (Intervento presentato al convegno 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 tenutosi a Vancouver; can) [10.1109/CVPR52729.2023.01007].

SCOTCH and SODA: A Transformer Video Shadow Detection Framework

Lio P.;
2023

Abstract

Shadows in videos are difficult to detect because of the large shadow deformation between frames. In this work, we argue that accounting for shadow deformation is essential when designing a video shadow detection method. To this end, we introduce the shadow deformation attention trajectory (SODA), a new type of video self-attention module, specially designed to handle the large shadow deformations in videos. Moreover, we present a new shadow contrastive learning mechanism (SCOTCH) which aims at guiding the network to learn a unified shadow representation from massive positive shadow pairs across different videos. We demonstrate empirically the effectiveness of our two contributions in an ablation study. Furthermore, we show that SCOTCH and SODA significantly outperforms existing techniques for video shadow detection. Code is available at the project page: https://lihaoliu-cambridge.github.io/scotch-and-soda/
2023
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
motion; tracking; Video: Low-level analysis
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
SCOTCH and SODA: A Transformer Video Shadow Detection Framework / Liu, L.; Prost, J.; Zhu, L.; Papadakis, N.; Lio, P.; Schonlieb, C. -B.; Aviles-Rivero, A. I.. - 2023-:(2023), pp. 10449-10458. (Intervento presentato al convegno 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 tenutosi a Vancouver; can) [10.1109/CVPR52729.2023.01007].
File allegati a questo prodotto
File Dimensione Formato  
Liu_ SCOTCH_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 910.22 kB
Formato Adobe PDF
910.22 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1726841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 6
social impact