Purpose: To explore the potential differences in epicardial adipose tissue (EAT) volume and attenuation measurements between photon-counting detector (PCD) and energy-integrating detector (EID)-CT systems. Methods: Fifty patients (mean age 69 +/- 8 years, 41 male [82 %]) were prospectively enrolled for a research coronary CT angiography (CCTA) on a PCD-CT within 30 days after clinical EID-based CCTA. EID-CT acquisitions were reconstructed using a Bv40 kernel at 0.6 mm slice thickness. The PCD-CT acquisition was reconstructed at a down-sampled resolution (0.6 mm, Bv40; [PCD-DS]) and at ultra-high resolutions (PCD-UHR) with a 0.2 mm slice thickness and Bv40, Bv48, and Bv64 kernels. EAT segmentation was performed semi-automatically at about 1 cm intervals and interpolated to cover the whole epicardium within a threshold of -190 to -30 HU. A subgroup analysis was performed based on quartile groups created from EID-CT data and PCD-UHRBv48 data. Differences were measured using repeated-measures ANOVA and the Friedman test. Correlations were tested using Pearson's and Spearman's rho, and agreement using Bland-Altman plots. Results: EAT volumes significantly differed between some reconstructions (e.g. EID-CT: 138 ml [IQR 100, 188]; PCD-DS: 147 ml [110, 206]; P<0.001). Overall, correlations between PCD-UHR and EID-CT EAT volumes were excellent, e.g. PCD-UHRBv48: r: 0.976 (95 % CI: 0.958, 0.987); P<0.001; with good agreement (mean bias: -9.5 ml; limits of agreement [LoA]: -40.6, 21.6). On the other hand, correlations regarding EAT attenuation was moderate, e.g. PCD-UHRBV48: r: 0.655 (95 % CI: 0.461, 0.790); P<0.001; mean bias: 6.5 HU; LoA: -2.0, 15.0. Conclusion: EAT attenuation and volume measurements demonstrated different absolute values between PCD-UHR, PCD-DS as well as EID-CT reconstructions, but showed similar tendencies on an intra-individual level. New protocols and threshold ranges need to be developed to allow comparison between PCD-CT and EID-CT data.
Intra-individual comparison of epicardial adipose tissue characteristics on coronary CT angiography between photon-counting detector and energy-integrating detector CT systems / Kravchenko, Dmitrij; Vecsey-Nagy, Milan; Tremamunno, Giuseppe; Schoepf, U Joseph; O'Doherty, Jim; Luetkens, Julian A; Kuetting, Daniel; Isaak, Alexander; Hagar, Muhammad Taha; Emrich, Tilman; Varga-Szemes, Akos. - In: EUROPEAN JOURNAL OF RADIOLOGY. - ISSN 1872-7727. - 181:(2024). [10.1016/j.ejrad.2024.111728]
Intra-individual comparison of epicardial adipose tissue characteristics on coronary CT angiography between photon-counting detector and energy-integrating detector CT systems
Tremamunno, Giuseppe;
2024
Abstract
Purpose: To explore the potential differences in epicardial adipose tissue (EAT) volume and attenuation measurements between photon-counting detector (PCD) and energy-integrating detector (EID)-CT systems. Methods: Fifty patients (mean age 69 +/- 8 years, 41 male [82 %]) were prospectively enrolled for a research coronary CT angiography (CCTA) on a PCD-CT within 30 days after clinical EID-based CCTA. EID-CT acquisitions were reconstructed using a Bv40 kernel at 0.6 mm slice thickness. The PCD-CT acquisition was reconstructed at a down-sampled resolution (0.6 mm, Bv40; [PCD-DS]) and at ultra-high resolutions (PCD-UHR) with a 0.2 mm slice thickness and Bv40, Bv48, and Bv64 kernels. EAT segmentation was performed semi-automatically at about 1 cm intervals and interpolated to cover the whole epicardium within a threshold of -190 to -30 HU. A subgroup analysis was performed based on quartile groups created from EID-CT data and PCD-UHRBv48 data. Differences were measured using repeated-measures ANOVA and the Friedman test. Correlations were tested using Pearson's and Spearman's rho, and agreement using Bland-Altman plots. Results: EAT volumes significantly differed between some reconstructions (e.g. EID-CT: 138 ml [IQR 100, 188]; PCD-DS: 147 ml [110, 206]; P<0.001). Overall, correlations between PCD-UHR and EID-CT EAT volumes were excellent, e.g. PCD-UHRBv48: r: 0.976 (95 % CI: 0.958, 0.987); P<0.001; with good agreement (mean bias: -9.5 ml; limits of agreement [LoA]: -40.6, 21.6). On the other hand, correlations regarding EAT attenuation was moderate, e.g. PCD-UHRBV48: r: 0.655 (95 % CI: 0.461, 0.790); P<0.001; mean bias: 6.5 HU; LoA: -2.0, 15.0. Conclusion: EAT attenuation and volume measurements demonstrated different absolute values between PCD-UHR, PCD-DS as well as EID-CT reconstructions, but showed similar tendencies on an intra-individual level. New protocols and threshold ranges need to be developed to allow comparison between PCD-CT and EID-CT data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.