In this paper a homotopy co-momentum map (à la Callies, Frégier, Rogers and Zambon) transgressing to the standard hydrodynamical co-momentum map of Arnol'd, Marsden, Weinstein and others is constructed and then generalized to a special class of Riemannian manifolds. Also, a covariant phase space interpretation of the coadjoint orbits associated to the Euler evolution for perfect fluids, and in particular of Brylinski's manifold of smooth oriented knots, is discussed. As an application of the above homotopy co-momentum map, a reinterpretation of the (Massey) higher-order linking numbers in terms of conserved quantities within the multisymplectic framework is provided and knot-theoretic analogues of first integrals in involution are determined.

A hydrodynamical homotopy co-momentum map and a multisymplectic interpretation of higher-order linking numbers / Miti, A. M.; Spera, M.. - In: JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 1446-7887. - 112:3(2022), pp. 335-354. [10.1017/S1446788720000518]

A hydrodynamical homotopy co-momentum map and a multisymplectic interpretation of higher-order linking numbers

Miti A. M.
;
2022

Abstract

In this paper a homotopy co-momentum map (à la Callies, Frégier, Rogers and Zambon) transgressing to the standard hydrodynamical co-momentum map of Arnol'd, Marsden, Weinstein and others is constructed and then generalized to a special class of Riemannian manifolds. Also, a covariant phase space interpretation of the coadjoint orbits associated to the Euler evolution for perfect fluids, and in particular of Brylinski's manifold of smooth oriented knots, is discussed. As an application of the above homotopy co-momentum map, a reinterpretation of the (Massey) higher-order linking numbers in terms of conserved quantities within the multisymplectic framework is provided and knot-theoretic analogues of first integrals in involution are determined.
2022
53D20; 37J39; 53D99; 57K10; 55S30
01 Pubblicazione su rivista::01a Articolo in rivista
A hydrodynamical homotopy co-momentum map and a multisymplectic interpretation of higher-order linking numbers / Miti, A. M.; Spera, M.. - In: JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 1446-7887. - 112:3(2022), pp. 335-354. [10.1017/S1446788720000518]
File allegati a questo prodotto
File Dimensione Formato  
Miti_A-hydrodynamical-homotopy_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 583.1 kB
Formato Adobe PDF
583.1 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1726303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact