Potential adverse consequences of exposure to air pollutants during exercise include decreased lung function, and exacerbation of asthma and exercise-induced bronchoconstriction. These effects are especially relevant for athletes and during international competitions, as they may impact athletic performance. Thus, assessing and mitigating exposure to air pollutants during exercising should be encouraged in sports venues. A comprehensive air quality assessmentwas carried out during theWorld Relays Yokohama 2019, in the stadiumand thewarm-up track. The pilot included on-line and off-line instrumentation for gaseous and particulate pollutants and meteorological parameters, and the comparison with local reference data. Air quality perception and exacerbation of symptoms of already-diagnosed diseases (mainly respiratory and cardiovascular) were assessed by athletes by means of questionnaires during training sessions. Median NO2 concentrations inside the stadium (25.6–31.9 μgm−3) were in the range of the Yokohama urban background, evidencing the impact of urban sources (e.g., traffic) on athletes' exposure during training and competition. The assessment of hourly air pollutant trends was identified as a valuable tool to provide guidance to reduce atheletes' exposure, by identifying the periods of the day with lowest ambient concentrations. This strategy could be adopted to define training and competition schedules, and would have special added value for athletes with respiratory conditions. Personal exposure to polycyclic aromatic hydrocarbons was quantified through wearable siliconewristbands, and showed highly variability across volunteers. The wristbands are a simple approach to assess personal exposure to potentially toxic organic compounds. Further research would be necessary with regard to specific air pollutants that may trigger or exacerbate respiratory conditions typical of the athlete community. The availability of high time-resolved exposure data in the stadiums opens up the possibility to calculate doses of specific pollutants for individual athletes in future athletics events, to understand the impact of environmental factors on athletic performance.
Athletes' exposure to air pollution during World Athletics Relays: A pilot study / Reche, ; Viana, ; Van, Drooge; B., L.; Fernández, ; F., J.; Escribano, ; Castaño-Vinyals, ; Nieuwenhuijsen, ; Adami, P; Bermon, ; S,. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 1879-1026. - (2020). [10.1016/j.scitotenv.2020.137161]
Athletes' exposure to air pollution during World Athletics Relays: A pilot study
Adami PConceptualization
;
2020
Abstract
Potential adverse consequences of exposure to air pollutants during exercise include decreased lung function, and exacerbation of asthma and exercise-induced bronchoconstriction. These effects are especially relevant for athletes and during international competitions, as they may impact athletic performance. Thus, assessing and mitigating exposure to air pollutants during exercising should be encouraged in sports venues. A comprehensive air quality assessmentwas carried out during theWorld Relays Yokohama 2019, in the stadiumand thewarm-up track. The pilot included on-line and off-line instrumentation for gaseous and particulate pollutants and meteorological parameters, and the comparison with local reference data. Air quality perception and exacerbation of symptoms of already-diagnosed diseases (mainly respiratory and cardiovascular) were assessed by athletes by means of questionnaires during training sessions. Median NO2 concentrations inside the stadium (25.6–31.9 μgm−3) were in the range of the Yokohama urban background, evidencing the impact of urban sources (e.g., traffic) on athletes' exposure during training and competition. The assessment of hourly air pollutant trends was identified as a valuable tool to provide guidance to reduce atheletes' exposure, by identifying the periods of the day with lowest ambient concentrations. This strategy could be adopted to define training and competition schedules, and would have special added value for athletes with respiratory conditions. Personal exposure to polycyclic aromatic hydrocarbons was quantified through wearable siliconewristbands, and showed highly variability across volunteers. The wristbands are a simple approach to assess personal exposure to potentially toxic organic compounds. Further research would be necessary with regard to specific air pollutants that may trigger or exacerbate respiratory conditions typical of the athlete community. The availability of high time-resolved exposure data in the stadiums opens up the possibility to calculate doses of specific pollutants for individual athletes in future athletics events, to understand the impact of environmental factors on athletic performance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.