In this paper, we investigate the usage of advanced algorithms, specifically Bayesian optimization, adapted for optimizing the design and operation of different linear accelerators (LINACs). The aim is to enhance the design efficiency and operational reliability and adaptability of linear accelerators. Through simulations and case studies, we demonstrate the effectiveness and practical implications of these algorithms for optimizing LINAC performances across diverse applications.
Advanced algorithms for linear accelerator design and operation / Ong, Y. K.; Bellan, L.; Pisent, A.; Comunian, M.; Fagotti, E.; Bortolato, D.; Montis, M.; Giacchini, M.; Carletto, O.. - (2024), pp. 484-487. ( 32nd Linear Accelerator Conference (LINAC) Chicago, Illinois, USA ) [10.18429/jacow-linac2024-tupb075].
Advanced algorithms for linear accelerator design and operation
Y. K. Ong
;
2024
Abstract
In this paper, we investigate the usage of advanced algorithms, specifically Bayesian optimization, adapted for optimizing the design and operation of different linear accelerators (LINACs). The aim is to enhance the design efficiency and operational reliability and adaptability of linear accelerators. Through simulations and case studies, we demonstrate the effectiveness and practical implications of these algorithms for optimizing LINAC performances across diverse applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
Ong_Advanced-algorithms_2024.pdf
accesso aperto
Note: Atto di convegno in volume
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


