In this paper, we investigate the usage of advanced algorithms, specifically Bayesian optimization, adapted for optimizing the design and operation of different linear accelerators (LINACs). The aim is to enhance the design efficiency and operational reliability and adaptability of linear accelerators. Through simulations and case studies, we demonstrate the effectiveness and practical implications of these algorithms for optimizing LINAC performances across diverse applications.

Advanced algorithms for linear accelerator design and operation / Ong, YSABELLA KASSANDRA; Bellan, Luca; Pisent, Andrea; Comunian, Michele; Fagotti, Enrico; Bortolato, Damiano; Montis, Maurizio; Giacchini, Mauro; Carletto, Osvaldo. - (2024). (Intervento presentato al convegno 32nd Linear Accelerator Conference (LINAC) tenutosi a Chicago, Illinois, USA) [10.18429/jacow-linac2024-tupb075].

Advanced algorithms for linear accelerator design and operation

YSABELLA KASSANDRA ONG
Primo
;
2024

Abstract

In this paper, we investigate the usage of advanced algorithms, specifically Bayesian optimization, adapted for optimizing the design and operation of different linear accelerators (LINACs). The aim is to enhance the design efficiency and operational reliability and adaptability of linear accelerators. Through simulations and case studies, we demonstrate the effectiveness and practical implications of these algorithms for optimizing LINAC performances across diverse applications.
2024
32nd Linear Accelerator Conference (LINAC)
accelerator, linac, artificial intelligence, optimization algorithm, bayesian optimization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Advanced algorithms for linear accelerator design and operation / Ong, YSABELLA KASSANDRA; Bellan, Luca; Pisent, Andrea; Comunian, Michele; Fagotti, Enrico; Bortolato, Damiano; Montis, Maurizio; Giacchini, Mauro; Carletto, Osvaldo. - (2024). (Intervento presentato al convegno 32nd Linear Accelerator Conference (LINAC) tenutosi a Chicago, Illinois, USA) [10.18429/jacow-linac2024-tupb075].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1725865
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact