Chalcogenide phase-change materials (PCM) have been explored in novel nonvolatile memory and neuromorphic computing technologies. Upon fast crystallization process, the conventional PCM undergo a semiconductor–to–semiconductor transition. However, some PCM change from a semiconducting amorphous phase to a metallic crystalline phase with low conductivity (“bad metal”). In this work, we focus on new “bad metal” PCM, namely, AgSnSe2, and carry out multiscale simulations to evaluate its potential for reconfigurable nanophotonic devices. We study the structural features and optical properties of both crystalline and amorphous AgSnSe2 via density functional theory (DFT) calculations and DFT-based ab initio molecular dynamic (AIMD) simulations. Then we use the calculated optical profiles as input parameters for finite difference time domain (FDTD) modeling of waveguide and metasurface devices. Our multiscale simulations predict AgSnSe2 to be a promising candidate for phase-change photonic applications.

Multiscale simulations of amorphous and crystalline AgSnSe2 alloy for reconfigurable nanophotonic applications / Shen, Xueyang; Zhang, Siyu; Jiang, Yihui; Huang, Tiankuo; Sun, Suyang; Zhou, Wen; Wang, Jiangjing; Mazzarello, Riccardo; Zhang, Wei. - e62(2024). [10.1002/mgea.62]

Multiscale simulations of amorphous and crystalline AgSnSe2 alloy for reconfigurable nanophotonic applications

Mazzarello, Riccardo;
2024

Abstract

Chalcogenide phase-change materials (PCM) have been explored in novel nonvolatile memory and neuromorphic computing technologies. Upon fast crystallization process, the conventional PCM undergo a semiconductor–to–semiconductor transition. However, some PCM change from a semiconducting amorphous phase to a metallic crystalline phase with low conductivity (“bad metal”). In this work, we focus on new “bad metal” PCM, namely, AgSnSe2, and carry out multiscale simulations to evaluate its potential for reconfigurable nanophotonic devices. We study the structural features and optical properties of both crystalline and amorphous AgSnSe2 via density functional theory (DFT) calculations and DFT-based ab initio molecular dynamic (AIMD) simulations. Then we use the calculated optical profiles as input parameters for finite difference time domain (FDTD) modeling of waveguide and metasurface devices. Our multiscale simulations predict AgSnSe2 to be a promising candidate for phase-change photonic applications.
2024
metasurface; multiscale simulation; nanophotonics; optical properties; phase-change materials
01 Pubblicazione su rivista::01a Articolo in rivista
Multiscale simulations of amorphous and crystalline AgSnSe2 alloy for reconfigurable nanophotonic applications / Shen, Xueyang; Zhang, Siyu; Jiang, Yihui; Huang, Tiankuo; Sun, Suyang; Zhou, Wen; Wang, Jiangjing; Mazzarello, Riccardo; Zhang, Wei. - e62(2024). [10.1002/mgea.62]
File allegati a questo prodotto
File Dimensione Formato  
Shen_Multiscale-simulations_2024.pdf

accesso aperto

Note: Articolo in rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1725862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact