Genes encoding glycosyltransferases can be under relatively high selection pressure, likely due to the involvement of the glycans synthesized in host-microbe interactions. Here, we used mice as an experimental model system to investigate whether loss of α-1, 3- galactosyltransferase gene (GGTA1) function and Galα1-3Galβ1-4GlcNAcβ1-R (αGal) glycan expression affects host-microbiota interactions, as might have occurred during primate evolution. We found that Ggta1 deletion shaped the composition of the gut microbiota. This occurred via an immunoglobulin (Ig)-dependent mechanism, associated with targeting of aGal-expressing bacteria by IgA. Systemic infection with an Ig-shaped microbiota inoculum elicited a less severe form of sepsis compared to infection with non-Ig-shaped microbiota. This suggests that in the absence of host αGal, antibodies can shape the microbiota towards lower pathogenicity. Given the fitness cost imposed by bacterial sepsis, we infer that the observed reduction in microbiota pathogenicity upon Ggta1 deletion in mice may have contributed to increase the frequency of GGTA1 loss-of-function mutations in ancestral primates that gave rise to humans.
Glycan-based shaping of the microbiota during primate evolution / Singh, S.; Bastos-Amador, P.; Thompson, J. A.; Truglio, M.; Yilmaz, B.; Cardoso, S.; Sobral, D.; Soares, M. P.. - In: ELIFE. - ISSN 2050-084X. - 10:(2021). [10.7554/eLife.67450]
Glycan-based shaping of the microbiota during primate evolution
Truglio M.;
2021
Abstract
Genes encoding glycosyltransferases can be under relatively high selection pressure, likely due to the involvement of the glycans synthesized in host-microbe interactions. Here, we used mice as an experimental model system to investigate whether loss of α-1, 3- galactosyltransferase gene (GGTA1) function and Galα1-3Galβ1-4GlcNAcβ1-R (αGal) glycan expression affects host-microbiota interactions, as might have occurred during primate evolution. We found that Ggta1 deletion shaped the composition of the gut microbiota. This occurred via an immunoglobulin (Ig)-dependent mechanism, associated with targeting of aGal-expressing bacteria by IgA. Systemic infection with an Ig-shaped microbiota inoculum elicited a less severe form of sepsis compared to infection with non-Ig-shaped microbiota. This suggests that in the absence of host αGal, antibodies can shape the microbiota towards lower pathogenicity. Given the fitness cost imposed by bacterial sepsis, we infer that the observed reduction in microbiota pathogenicity upon Ggta1 deletion in mice may have contributed to increase the frequency of GGTA1 loss-of-function mutations in ancestral primates that gave rise to humans.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.