Staphylococcus aureus is a predominant cause of infections in individuals with spinal cord stimulation (SCS) devices. Biofilm formation complicates these infections, commonly requiring both surgical and antibiotic treatments. This study explored the biofilm matrix composition and antimicrobial susceptibility of planktonic and biofilm-growing S. aureus isolates from individuals with SCS-related infections. Whole-genome sequencing (WGS) examined genotypes, virulome, resistome, and the pan-genome structure. The study also analyzed biofilm matrix composition, early surface adhesion, hemolytic activity, and antibiotic-susceptibility testing. WGS revealed genetic diversity among isolates. One isolate, though oxacillin susceptible, contained the mecA gene. The median number of virulence factor genes per isolate was 58. All isolates harbored the biofilm-related icaA/D genes. When assessing phenotypic characteristics, all strains demonstrated the ability to form biofilms in vitro. The antimicrobial susceptibility profile indicated that oxacillin, rifampin, and teicoplanin showed the highest efficacy against S. aureus biofilm. Conversely, high biofilm tolerance was observed for vancomycin, trimethoprim/sulfamethoxazole, and levofloxacin. These findings suggest that S. aureus isolates are highly virulent and produce robust biofilms. In cases of suspected biofilm infections caused by S. aureus, vancomycin should not be the primary choice due to its low activity against biofilm. Instead, oxacillin, rifampin, and teicoplanin appear to be more effective options to manage SCS infections.
Biofilm-mediated antibiotic tolerance in Staphylococcus aureus from spinal cord stimulation device-related infections / Sivori, Francesca; Cavallo, Ilaria; Truglio, Mauro; Pelagalli, Lorella; Mariani, Valerio; Fabrizio, Giorgia; Abril, Elva; Santino, Iolanda; Fradiani, Piera Assunta; Solmone, Mariacarmela; Pimpinelli, Fulvia; Toma, Luigi; Arcioni, Roberto; De Blasi, Roberto Alberto; Di Domenico, Enea Gino. - In: MICROBIOLOGY SPECTRUM. - ISSN 2165-0497. - (2024). [10.1128/spectrum.01683-24]
Biofilm-mediated antibiotic tolerance in Staphylococcus aureus from spinal cord stimulation device-related infections
Sivori, Francesca;Truglio, Mauro;Fabrizio, Giorgia;Santino, Iolanda;Fradiani, Piera Assunta;Toma, Luigi;Arcioni, Roberto;De Blasi, Roberto Alberto;Di Domenico, Enea Gino
2024
Abstract
Staphylococcus aureus is a predominant cause of infections in individuals with spinal cord stimulation (SCS) devices. Biofilm formation complicates these infections, commonly requiring both surgical and antibiotic treatments. This study explored the biofilm matrix composition and antimicrobial susceptibility of planktonic and biofilm-growing S. aureus isolates from individuals with SCS-related infections. Whole-genome sequencing (WGS) examined genotypes, virulome, resistome, and the pan-genome structure. The study also analyzed biofilm matrix composition, early surface adhesion, hemolytic activity, and antibiotic-susceptibility testing. WGS revealed genetic diversity among isolates. One isolate, though oxacillin susceptible, contained the mecA gene. The median number of virulence factor genes per isolate was 58. All isolates harbored the biofilm-related icaA/D genes. When assessing phenotypic characteristics, all strains demonstrated the ability to form biofilms in vitro. The antimicrobial susceptibility profile indicated that oxacillin, rifampin, and teicoplanin showed the highest efficacy against S. aureus biofilm. Conversely, high biofilm tolerance was observed for vancomycin, trimethoprim/sulfamethoxazole, and levofloxacin. These findings suggest that S. aureus isolates are highly virulent and produce robust biofilms. In cases of suspected biofilm infections caused by S. aureus, vancomycin should not be the primary choice due to its low activity against biofilm. Instead, oxacillin, rifampin, and teicoplanin appear to be more effective options to manage SCS infections.File | Dimensione | Formato | |
---|---|---|---|
Sivori_Biofilm-mediated_2024.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.12 MB
Formato
Adobe PDF
|
2.12 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.