Despite Large Language Models (LLMs) have revolutionised Natural Language Processing (NLP), their capability of performing logical reasoning and automated planning is still debated. In this context, the state of the art is \model, a GPT-2 model specifically trained for planning tasks. This recent approach provides GPT-based planning policies with remarkable performance, but it can generate invalid plans containing violated action preconditions or unsatisfied goals. To address this limitation, we propose an extension of \model that integrates a plan validator into the generation process. The validator is exploited to prune invalid plan prefixes during the GPT token generation, obtaining a more robust and powerful solution to planning via GPT. We empirically evaluate the effectiveness of our approach and demonstrate its potential in various planning domains.

Enhancing GPT-Based Planning Policies by Model-Based Plan Validation / Rossetti, N.; Tummolo, M.; Gerevini, A. E.; Olivato, M.; Putelli, L.; Serina, I.. - 14980 LNAI:(2024), pp. 328-337. (Intervento presentato al convegno Neural-Symbolic Learning and Reasoning (NeSy 2024) tenutosi a Barcelona, Spain) [10.1007/978-3-031-71170-1_26].

Enhancing GPT-Based Planning Policies by Model-Based Plan Validation

Rossetti N.;Tummolo M.;Gerevini A. E.;
2024

Abstract

Despite Large Language Models (LLMs) have revolutionised Natural Language Processing (NLP), their capability of performing logical reasoning and automated planning is still debated. In this context, the state of the art is \model, a GPT-2 model specifically trained for planning tasks. This recent approach provides GPT-based planning policies with remarkable performance, but it can generate invalid plans containing violated action preconditions or unsatisfied goals. To address this limitation, we propose an extension of \model that integrates a plan validator into the generation process. The validator is exploited to prune invalid plan prefixes during the GPT token generation, obtaining a more robust and powerful solution to planning via GPT. We empirically evaluate the effectiveness of our approach and demonstrate its potential in various planning domains.
2024
Neural-Symbolic Learning and Reasoning (NeSy 2024)
GPT models for Automated Planning; General Planning Policies; Deep Learning for Planning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Enhancing GPT-Based Planning Policies by Model-Based Plan Validation / Rossetti, N.; Tummolo, M.; Gerevini, A. E.; Olivato, M.; Putelli, L.; Serina, I.. - 14980 LNAI:(2024), pp. 328-337. (Intervento presentato al convegno Neural-Symbolic Learning and Reasoning (NeSy 2024) tenutosi a Barcelona, Spain) [10.1007/978-3-031-71170-1_26].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1724777
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact