In this paper, we propose a novel approach to Android malware analysis and categorization that leverages the power of BERT (Bidi-rectional Encoder Representations from Transformers) to classify API call sequences generated from Android API Call Graph. By utilizing the API Call Graph, our approach captures the intricate re-lationships and dependencies between API calls, enabling a deeper understanding of the behavior exhibited by Android malware. Our results show that our approach achieves high accuracy in classi-fying API call sequences as malicious or benign and the method provides a promising solution also for categorizing Android mal-ware and can help mitigate the risks posed by malicious Android applications.

Graph-Based Android Malware Detection and Categorization through BERT Transformer / Saracino, Andrea; Simoni, Marco. - (2023), pp. 1-7. (Intervento presentato al convegno ARES 2023 tenutosi a Benevento) [10.1145/3600160.3605057].

Graph-Based Android Malware Detection and Categorization through BERT Transformer

Saracino, Andrea
;
2023

Abstract

In this paper, we propose a novel approach to Android malware analysis and categorization that leverages the power of BERT (Bidi-rectional Encoder Representations from Transformers) to classify API call sequences generated from Android API Call Graph. By utilizing the API Call Graph, our approach captures the intricate re-lationships and dependencies between API calls, enabling a deeper understanding of the behavior exhibited by Android malware. Our results show that our approach achieves high accuracy in classi-fying API call sequences as malicious or benign and the method provides a promising solution also for categorizing Android mal-ware and can help mitigate the risks posed by malicious Android applications.
2023
ARES 2023
Cybersecurity; Malware; Android; BERT Transformer; API Call Graph
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Graph-Based Android Malware Detection and Categorization through BERT Transformer / Saracino, Andrea; Simoni, Marco. - (2023), pp. 1-7. (Intervento presentato al convegno ARES 2023 tenutosi a Benevento) [10.1145/3600160.3605057].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1724719
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact