Land cover, or the biophysical cover of the earth's surface, plays an essential role in climate and environmental dynamics. Processes involving land cover change, are among the factors that most threaten the ecosystems sustainability and services. The objective of the work is to explore the potential of the PRISMA multi-temporal hyperspectral imagery in generating new EO products to complement/improve the products provided by Copernicus' Land Monitoring Service for the analysis and monitoring of complex and fragile ecosystems such as the coastal Metaponto (Southern Italy) by estimating of the land biological and economic productivity loss and land degradation vulnerability. Preliminary results showed that an improvement in ecosystem mapping is supported by the use of Artificial Neural Networks (ANN), k-Nearest Neighbors (KNN) and Support Vector Machines (SVM) and a hybrid approach to define the vegetation trait, leads to significant improvement in the damage assessment and land degradation assessment.

Detection of critical areas prone to land degradation using prisma: the Metaponto coastal area in South Italy test case / Pignatti, S.; Carfora, M. F.; Coluzzi, R.; D'Amato, L.; De Feis, I.; Mora, D. Fonnegra; Laneve, G.; Imbrenda, V.; Lanfredi, M.; Mirzaei, S.; Palombo, A.; Pascucci, S.; Rossi, Francesco.; Santini, F.; Simoniello, T.; Vanguri, R. - (2024), pp. 1063-1066. (Intervento presentato al convegno IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium tenutosi a Athens, Greece) [10.1109/igarss53475.2024.10641499].

Detection of critical areas prone to land degradation using prisma: the Metaponto coastal area in South Italy test case

Pignatti, S.;Laneve, G.;Rossi, Francesco.;Simoniello, T.;Vanguri, R
2024

Abstract

Land cover, or the biophysical cover of the earth's surface, plays an essential role in climate and environmental dynamics. Processes involving land cover change, are among the factors that most threaten the ecosystems sustainability and services. The objective of the work is to explore the potential of the PRISMA multi-temporal hyperspectral imagery in generating new EO products to complement/improve the products provided by Copernicus' Land Monitoring Service for the analysis and monitoring of complex and fragile ecosystems such as the coastal Metaponto (Southern Italy) by estimating of the land biological and economic productivity loss and land degradation vulnerability. Preliminary results showed that an improvement in ecosystem mapping is supported by the use of Artificial Neural Networks (ANN), k-Nearest Neighbors (KNN) and Support Vector Machines (SVM) and a hybrid approach to define the vegetation trait, leads to significant improvement in the damage assessment and land degradation assessment.
2024
IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium
degradation; support vector machines; image resolution; ecosystems; land surface; vegetation mapping; sea measurements
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Detection of critical areas prone to land degradation using prisma: the Metaponto coastal area in South Italy test case / Pignatti, S.; Carfora, M. F.; Coluzzi, R.; D'Amato, L.; De Feis, I.; Mora, D. Fonnegra; Laneve, G.; Imbrenda, V.; Lanfredi, M.; Mirzaei, S.; Palombo, A.; Pascucci, S.; Rossi, Francesco.; Santini, F.; Simoniello, T.; Vanguri, R. - (2024), pp. 1063-1066. (Intervento presentato al convegno IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium tenutosi a Athens, Greece) [10.1109/igarss53475.2024.10641499].
File allegati a questo prodotto
File Dimensione Formato  
Pignatti_Detection of citical_2024.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF   Contatta l'autore
Pignatti_Frontespizio_indice_Detection of citical_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1724551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact