We prove uniqueness of least energy solutions to the fractional Lane-Emden equation, under homogeneous Dirichlet exterior conditions, when the underlying domain is a ball B subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \subset \mathbb {R}<^>N$$\end{document}. The equation is characterized by a superlinear, subcritical power-like nonlinearity. The proof makes use of Morse theory and is inspired by some results obtained by C. S. Lin in the '90s. A new Hopf's Lemma-type result shown in this paper is an essential element in the proof of nondegeneracy of least energy solutions.
Uniqueness of least energy solutions to the fractional Lane–Emden equation in the ball / Delatorre, Azahara; Parini, Enea. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - (2024). [10.1007/s00208-024-03019-z]
Uniqueness of least energy solutions to the fractional Lane–Emden equation in the ball
DelaTorre, Azahara;Parini, Enea
2024
Abstract
We prove uniqueness of least energy solutions to the fractional Lane-Emden equation, under homogeneous Dirichlet exterior conditions, when the underlying domain is a ball B subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \subset \mathbb {R}<^>N$$\end{document}. The equation is characterized by a superlinear, subcritical power-like nonlinearity. The proof makes use of Morse theory and is inspired by some results obtained by C. S. Lin in the '90s. A new Hopf's Lemma-type result shown in this paper is an essential element in the proof of nondegeneracy of least energy solutions.| File | Dimensione | Formato | |
|---|---|---|---|
|
DelaTorre_Uniqueness_2024.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
385.79 kB
Formato
Adobe PDF
|
385.79 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


