Rooted in the explosion of deep learning over the past decade, this thesis spans from AlphaGo to ChatGPT to empirically examine the fundamental concepts needed to realize the vision of an artificial scientist: a machine with the capacity to autonomously generate original research and contribute to the expansion of human knowledge. The investigation begins with {\sc Olivaw}, an AlphaGo Zero-like agent that discovers Othello knowledge from scratch but is unable to communicate it. This realization leads to the development of the Explanatory Learning (EL) framework, a formalization of the problem faced by a scientist when trying to explain a new phenomenon to their peers. The effective EL prescriptions allow us to crack Zendo, a board game simulating the scientific endeavor. This success comes with a fundamental insight: an artificial scientist must develop its own interpretation of the language used to explain its findings. This perspective then leads us to see modern multimodal models as interpreters, and to devise a new way to build interpretable and cost-effective CLIP-like models: by coupling two unimodal models using little multimodal data and no further training. Finally, we discuss what ChatGPT and its siblings are still missing to become artificial scientists, and introduce Odeen, a benchmark about interpreting explanations that sees LLMs going no further than random chance while being instead fully solved by humans.

Artificial scientific discovery / Norelli, Antonio. - (2024 Jan 26).

Artificial scientific discovery

NORELLI, ANTONIO
26/01/2024

Abstract

Rooted in the explosion of deep learning over the past decade, this thesis spans from AlphaGo to ChatGPT to empirically examine the fundamental concepts needed to realize the vision of an artificial scientist: a machine with the capacity to autonomously generate original research and contribute to the expansion of human knowledge. The investigation begins with {\sc Olivaw}, an AlphaGo Zero-like agent that discovers Othello knowledge from scratch but is unable to communicate it. This realization leads to the development of the Explanatory Learning (EL) framework, a formalization of the problem faced by a scientist when trying to explain a new phenomenon to their peers. The effective EL prescriptions allow us to crack Zendo, a board game simulating the scientific endeavor. This success comes with a fundamental insight: an artificial scientist must develop its own interpretation of the language used to explain its findings. This perspective then leads us to see modern multimodal models as interpreters, and to devise a new way to build interpretable and cost-effective CLIP-like models: by coupling two unimodal models using little multimodal data and no further training. Finally, we discuss what ChatGPT and its siblings are still missing to become artificial scientists, and introduce Odeen, a benchmark about interpreting explanations that sees LLMs going no further than random chance while being instead fully solved by humans.
26-gen-2024
File allegati a questo prodotto
File Dimensione Formato  
Tesi_dottorato_Norelli.pdf

accesso aperto

Note: Tesi completa
Tipologia: Tesi di dottorato
Licenza: Altra licenza (allegare)
Dimensione 24.89 MB
Formato Adobe PDF
24.89 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1724132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact