Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG- bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood develop- ment, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google- internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models / Srivastava, Aarohi; Rastogi, Abhinav; Rao, Abhishek; Awal Md Shoeb, Abu; Abid, Abubakar; Fisch, Adam; Brown, Adam R.; Santoro, Adam; Gupta, Aditya; Garriga-Alonso, Adrià; Kluska, Agnieszka; Lewkowycz, Aitor; Agarwal, Akshat; Power, Alethea; Ray, Alex; Warstadt, Alex; Kocurek, Alexander W.; Safaya, Ali; Tazarv, Ali; Xiang, Alice; Parrish, Alicia; Nie, Allen; Hussain, Aman; Askell, Amanda; Dsouza, Amanda; Slone, Ambrose; Rahane, Ameet; Iyer, Anantharaman S.; Andreassen, Anders; Madotto, Andrea; Santilli, Andrea; Stuhlmüller, Andreas; Dai, Andrew; La, Andrew; Lampinen, Andrew; Zou, Andy; Jiang, Angela; Chen, Angelica; Vuong, Anh; Gupta, Animesh; Gottardi, Anna; Norelli, Antonio; Venkatesh, Anu; Gholamidavoodi, Arash; Tabassum, Arfa; Menezes, Arul; Kirubarajan, Arun; Mullokandov, Asher; Sabharwal, Ashish; Herrick, Austin; Efrat, Avia; Erdem, Aykut; Karakaş, Ayla; Ryan Roberts, B.; Sheng Loe, Bao; Zoph, Barret; Bojanowski, Bartłomiej; Özyurt, Batuhan; Hedayatnia, Behnam; Neyshabur, Behnam; Inden, Benjamin; Stein, Benno; Ekmekci, Berk; Yuchen Lin, Bill; Howald, Blake; Orinion, Bryan; Diao, Cameron; Dour, Cameron; Stinson, Catherine; Argueta, Cedrick; Ferri Ramírez, César; Singh, Chandan; Rathkopf, Charles; Meng, Chenlin; Baral, Chitta; Wu, Chiyu; Callison-Burch, Chris; Waites, Chris; Voigt, Christian; Manning, Christopher D.; Potts, Christopher; Ramirez, Cindy; Rivera, Clara E.; Siro, Clemencia; Raffel, Colin; Ashcraft, Courtney; Garbacea, Cristina; Sileo, Damien; Garrette, Dan; Hendrycks, Dan; Kilman, Dan; Roth, Dan; Freeman, Daniel; Khashabi, Daniel; Levy, Daniel; Moseguí González, Daniel; Perszyk, Danielle; Hernandez, Danny; Chen, Danqi; Ippolito, Daphne; Gilboa, Dar; Dohan, David; Drakard, David; Jurgens, David; Datta, Debajyoti; Ganguli, Deep; Emelin, Denis; Kleyko, Denis; Yuret, Deniz; Chen, Derek; Tam, Derek; Hupkes, Dieuwke; Misra, Diganta; Buzan, Dilyar; Coelho Mollo, Dimitri; Yang, Diyi; Lee, Dong-Ho; Schrader, Dylan; Shutova, Ekaterina; Dogus Cubuk, Ekin; Segal, Elad; Hagerman, Eleanor; Barnes, Elizabeth; Donoway, Elizabeth; Pavlick, Ellie; Rodola, Emanuele; Lam, Emma; Chu, Eric; Tang, Eric; Erdem, Erkut; Chang, Ernie; Chi, Ethan A.; Dyer, Ethan; Jerzak, Ethan; Kim, Ethan; Engefu Manyasi, Eunice; Zheltonozhskii, Evgenii; Xia, Fanyue; Siar, Fatemeh; Martínez-Plumed, Fernando; Happé, Francesca; Chollet, Francois; Rong, Frieda; Mishra, Gaurav; Indra Winata, Genta; de Melo, Gerard; Kruszewski, Germán; Parascandolo, Giambattista; Mariani, Giorgio; Wang, Gloria; Jaimovitch-López, Gonzalo; Betz, Gregor; Gur-Ari, Guy; Galijasevic, Hana; Kim, Hannah; Rashkin, Hannah; Hajishirzi, Hannaneh; Mehta, Harsh; Bogar, Hayden; Shevlin, Henry; Schütze, Hinrich; Yakura, Hiromu; Zhang, Hongming; Mee Wong, Hugh; Ng, Ian; Noble, Isaac; Jumelet, Jaap; Geissinger, Jack; Kernion, Jackson; Hilton, Jacob; Lee, Jaehoon; Fernández Fisac, Jaime; Simon, James B.; Koppel, James; Zheng, James; Zou, James; Kocoń, Jan; Thompson, Jana; Wingfield, Janelle; Kaplan, Jared; Radom, Jarema; Sohl-Dickstein, Jascha; Phang, Jason; Wei, Jason; Yosinski, Jason; Novikova, Jekaterina; Bosscher, Jelle; Marsh, Jennifer; Kim, Jeremy; Taal, Jeroen; Engel, Jesse; Alabi, Jesujoba; Xu, Jiacheng; Song, Jiaming; Tang, Jillian; Waweru, Joan; Burden, John; Miller, John; Balis, John U.; Batchelder, Jonathan; Berant, Jonathan; Frohberg, Jörg; Rozen, Jos; Hernandez-Orallo, Jose; Boudeman, Joseph; Guerr, Joseph; Jones, Joseph; Tenenbaum, Joshua B.; Rule, Joshua S.; Chua, Joyce; Kanclerz, Kamil; Livescu, Karen; Krauth, Karl; Gopalakrishnan, Karthik; Ignatyeva, Katerina; Markert, Katja; Dhole, Kaustubh D.; Gimpel, Kevin; Omondi, Kevin; Mathewson, Kory; Chiafullo, Kristen; Shkaruta, Ksenia; Shridhar, Kumar; Mcdonell, Kyle; Richardson, Kyle; Reynolds, Laria; Gao, Leo; Zhang, Li; Dugan, Liam; Qin, Lianhui; Contreras-Ochando, Lidia; Morency, Louis-Philippe; Moschella, Luca; Lam, Lucas; Noble, Lucy; Schmidt, Ludwig; He, Luheng; Oliveros Colón, Luis; Metz, Luke; Kerem Şenel, Lütfi; Bosma, Maarten; Sap, Maarten; ter Hoeve, Maartje; Farooqi, Maheen; Faruqui, Manaal; Mazeika, Mantas; Baturan, Marco; Marelli, Marco; Maru, Marco; Jose Ramírez Quintana, Maria; Tolkiehn, Marie; Giulianelli, Mario; Lewis, Martha; Potthast, Martin; Leavitt, Matthew L.; Hagen, Matthias; Schubert, Mátyás; Orduna Baitemirova, Medina; Arnaud, Melody; Mcelrath, Melvin; Yee, Michael A.; Cohen, Michael; Gu, Michael; Ivanitskiy, Michael; Starritt, Michael; Strube, Michael; Swędrowski, Michał; Bevilacqua, Michele; Yasunaga, Michihiro; Kale, Mihir; Cain, Mike; Xu, Mimee; Suzgun, Mirac; Walker, Mitch; Tiwari, Mo; Bansal, Mohit; Aminnaseri, Moin; Geva, Mor; Gheini, Mozhdeh; T, Mukund Varma; Peng, Nanyun; Chi, Nathan A.; Lee, Nayeon; Gur-Ari Krakover, Neta; Cameron, Nicholas; Roberts, Nicholas; Doiron, Nick; Martinez, Nicole; Nangia, Nikita; Deckers, Niklas; Muennighoff, Niklas; Shirish Keskar, Nitish; Iyer, Niveditha S.; Constant, Noah; Fiedel, Noah; Wen, Nuan; Zhang, Oliver; Agha, Omar; Elbaghdadi, Omar; Levy, Omer; Evans, Owain; Antonio Moreno Casares, Pablo; Doshi, Parth; Fung, Pascale; Pu Liang, Paul; Vicol, Paul; Alipoormolabashi, Pegah; Liao, Peiyuan; Liang, Percy; Chang, Peter; Eckersley, Peter; Mon Htut, Phu; Hwang, Pinyu; Miłkowski, Piotr; Patil, Piyush; Pezeshkpour, Pouya; Oli, Priti; Mei, Qiaozhu; Lyu, Qing; Chen, Qinlang; Banjade, Rabin; Etta Rudolph, Rachel; Gabriel, Raefer; Habacker, Rahel; Risco, Ramon; Millière, Raphaël; Garg, Rhythm; Barnes, Richard; Saurous, Rif A.; Arakawa, Riku; Raymaekers, Robbe; Frank, Robert; Sikand, Rohan; Novak, Roman; Sitelew, Roman; Lebras, Ronan; Liu, Rosanne; Jacobs, Rowan; Zhang, Rui; Salakhutdinov, Ruslan; Chi, Ryan; Lee, Ryan; Stovall, Ryan; Teehan, Ryan; Yang, Rylan; Singh, Sahib; Mohammad, Saif M.; Anand, Sajant; Dillavou, Sam; Shleifer, Sam; Wiseman, Sam; Gruetter, Samuel; Bowman, Samuel R.; Schoenholz, Samuel S.; Han, Sanghyun; Kwatra, Sanjeev; Rous, Sarah A.; Ghazarian, Sarik; Ghosh, Sayan; Casey, Sean; Bischoff, Sebastian; Gehrmann, Sebastian; Schuster, Sebastian; Sadeghi, Sepideh; Hamdan, Shadi; Zhou, Sharon; Srivastava, Shashank; Shi, Sherry; Singh, Shikhar; Asaadi, Shima; Shane Gu, Shixiang; Pachchigar, Shubh; Toshniwal, Shubham; Upadhyay, Shyam; Shyamolima, ; Shakeri, Siamak; Thormeyer, Simon; Melzi, Simone; Reddy, Siva; Priscilla Makini, Sneha; Lee, Soo-Hwan; Torene, Spencer; Hatwar, Sriharsha; Dehaene, Stanislas; Divic, Stefan; Ermon, Stefano; Biderman, Stella; Lin, Stephanie; Prasad, Stephen; Piantadosi, Steven T.; Shieber, Stuart M.; Misherghi, Summer; Kiritchenko, Svetlana; Mishra, Swaroop; Linzen, Tal; Schuster, Tal; Li, Tao; Yu, Tao; Ali, Tariq; Hashimoto, Tatsu; Wu, Te-Lin; Desbordes, Théo; Rothschild, Theodore; Phan, Thomas; Wang, Tianle; Nkinyili, Tiberius; Schick, Timo; Kornev, Timofei; Tunduny, Titus; Gerstenberg, Tobias; Chang, Trenton; Neeraj, Trishala; Khot, Tushar; Shultz, Tyler; Shaham, Uri; Misra, Vedant; Demberg, Vera; Nyamai, Victoria; Raunak, Vikas; Ramasesh, Vinay; Uday Prabhu, Vinay; Padmakumar, Vishakh; Srikumar, Vivek; Fedus, William; Saunders, William; Zhang, William; Vossen, Wout; Ren, Xiang; Tong, Xiaoyu; Zhao, Xinran; Wu, Xinyi; Shen, Xudong; Yaghoobzadeh, Yadollah; Lakretz, Yair; Song, Yangqiu; Bahri, Yasaman; Choi, Yejin; Yang, Yichi; Hao, Yiding; Chen, Yifu; Belinkov, Yonatan; Hou, Yu; Hou, Yufang; Bai, Yuntao; Seid, Zachary; Zhao, Zhuoye; Wang, Zijian; Wang, Zijie J.; Wang, Zirui; Wu, Ziyi. - In: TRANSACTIONS ON MACHINE LEARNING RESEARCH. - ISSN 2835-8856. - 5(2023).
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
Andrea Santilli
;Antonio Norelli
;David Jurgens
;Ekaterina Shutova
;Emanuele Rodola
;Luca Moschella;Marco Maru;Michele Bevilacqua;Simone Melzi;
2023
Abstract
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG- bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood develop- ment, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google- internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.File | Dimensione | Formato | |
---|---|---|---|
Srivastava_Beyond-Imitation-Game_2023.pdf
accesso aperto
Note: https://openreview.net/pdf?id=uyTL5Bvosj
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.67 MB
Formato
Adobe PDF
|
2.67 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.