Berberine (BBR) is a natural molecule with noteworthy pharmacological properties, including the prevention of antibiotic resistance in Gram-negative bacteria. However, its oral bioavailability is poor, thus resulting in an impaired absorption and efficacy in humans. In combination with other drugs, liposomes have been shown to enhance the availability of the drug, representing a smart delivery system to target tissues and reduce negative side effects. To date, there is a lack of studies on BBR and liposomes that enable the rationalization and molecular-based design of such formulations for future use in humans. In this work, the encapsulation of BBR into liposomes is proposed to overcome current limitations using a combination of experimental and computational assays to rationalize the membrane composition of liposomes that maximizes BBR encapsulation. First, the encapsulation efficiency was measured for several membrane compositions, revealing that it is enhanced by cholesteryl hemisuccinate and, to a lesser extent, by cholesterol. The physical basis of the BBR encapsulation efficiency and permeability was clarified using molecular dynamics simulation: using the lipid composition, one can tune the capability of membranes to attract, i.e., to adsorb, the molecules onto their surface. Overall, these findings suggest a rational strategy to maximize the encapsulation efficiency of liposomes by using negatively charged lipids, thus representing the basis for designing delivery systems for BBR, useful to treat, e.g., antibiotic resistance.
Membrane Composition Allows the Optimization of Berberine Encapsulation in Liposomes / Costa, Flavio; Giorgini, Giorgia; Minnelli, Cristina; Mobbili, Giovanna; Guardiani, Carlo; Giacomello, Alberto; Galeazzi, Roberta. - In: MOLECULAR PHARMACEUTICS. - ISSN 1543-8384. - (2024). [10.1021/acs.molpharmaceut.4c00830]
Membrane Composition Allows the Optimization of Berberine Encapsulation in Liposomes
Costa, FlavioPrimo
;Guardiani, Carlo;Giacomello, Alberto
;
2024
Abstract
Berberine (BBR) is a natural molecule with noteworthy pharmacological properties, including the prevention of antibiotic resistance in Gram-negative bacteria. However, its oral bioavailability is poor, thus resulting in an impaired absorption and efficacy in humans. In combination with other drugs, liposomes have been shown to enhance the availability of the drug, representing a smart delivery system to target tissues and reduce negative side effects. To date, there is a lack of studies on BBR and liposomes that enable the rationalization and molecular-based design of such formulations for future use in humans. In this work, the encapsulation of BBR into liposomes is proposed to overcome current limitations using a combination of experimental and computational assays to rationalize the membrane composition of liposomes that maximizes BBR encapsulation. First, the encapsulation efficiency was measured for several membrane compositions, revealing that it is enhanced by cholesteryl hemisuccinate and, to a lesser extent, by cholesterol. The physical basis of the BBR encapsulation efficiency and permeability was clarified using molecular dynamics simulation: using the lipid composition, one can tune the capability of membranes to attract, i.e., to adsorb, the molecules onto their surface. Overall, these findings suggest a rational strategy to maximize the encapsulation efficiency of liposomes by using negatively charged lipids, thus representing the basis for designing delivery systems for BBR, useful to treat, e.g., antibiotic resistance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.