Motivation: High-throughput gene expression can be used to address a wide range of fundamental biological problems, but datasets of an appropriate size are often unavailable. Moreover, existing transcriptomics simulators have been criticized because they fail to emulate key properties of gene expression data. In this article, we develop a method based on a conditional generative adversarial network to generate realistic transcriptomics data for Escherichia coli and humans. We assess the performance of our approach across several tissues and cancer-types. Results: We show that our model preserves several gene expression properties significantly better than widely used simulators, such as SynTReN or GeneNetWeaver. The synthetic data preserve tissue- and cancer-specific properties of transcriptomics data. Moreover, it exhibits real gene clusters and ontologies both at local and global scales, suggesting that the model learns to approximate the gene expression manifold in a biologically meaningful way.

Adversarial generation of gene expression data / Vinas, R.; Andres-Terre, H.; Lio, P.; Bryson, K.. - In: BIOINFORMATICS. - ISSN 1367-4803. - 38:3(2022), pp. 730-737. [10.1093/bioinformatics/btab035]

Adversarial generation of gene expression data

Lio P.;
2022

Abstract

Motivation: High-throughput gene expression can be used to address a wide range of fundamental biological problems, but datasets of an appropriate size are often unavailable. Moreover, existing transcriptomics simulators have been criticized because they fail to emulate key properties of gene expression data. In this article, we develop a method based on a conditional generative adversarial network to generate realistic transcriptomics data for Escherichia coli and humans. We assess the performance of our approach across several tissues and cancer-types. Results: We show that our model preserves several gene expression properties significantly better than widely used simulators, such as SynTReN or GeneNetWeaver. The synthetic data preserve tissue- and cancer-specific properties of transcriptomics data. Moreover, it exhibits real gene clusters and ontologies both at local and global scales, suggesting that the model learns to approximate the gene expression manifold in a biologically meaningful way.
2022
.
01 Pubblicazione su rivista::01a Articolo in rivista
Adversarial generation of gene expression data / Vinas, R.; Andres-Terre, H.; Lio, P.; Bryson, K.. - In: BIOINFORMATICS. - ISSN 1367-4803. - 38:3(2022), pp. 730-737. [10.1093/bioinformatics/btab035]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1723947
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 16
social impact