Automated systems must adapt to evolving environments, yet many struggle with drift phenomena affecting healthcare, finance, and cybersecurity domains. The DELTA workshop addresses this by distinguishing between data and concept drift, aiming to create a practical, human-centric framework for managing drift. The workshop seeks innovative drift detection, prediction, and analysis solutions by uniting researchers and practitioners. DELTA fosters collaboration to advance the understanding and management of drift in dynamic data landscapes by featuring keynotes, paper presentations, interactive sessions, and discussions.

Workshop on Discovering Drift Phenomena in Evolving Data Landscape (DELTA) / Piangerelli, M.; Prenkaj, B.; Rotalinti, Y.; Joshi, A.; Stilo, G.. - (2024), pp. 6731-6732. (Intervento presentato al convegno 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024 tenutosi a Barcelona, Spain) [10.1145/3637528.3671492].

Workshop on Discovering Drift Phenomena in Evolving Data Landscape (DELTA)

Prenkaj B.
Secondo
Conceptualization
;
Stilo G.
Ultimo
Supervision
2024

Abstract

Automated systems must adapt to evolving environments, yet many struggle with drift phenomena affecting healthcare, finance, and cybersecurity domains. The DELTA workshop addresses this by distinguishing between data and concept drift, aiming to create a practical, human-centric framework for managing drift. The workshop seeks innovative drift detection, prediction, and analysis solutions by uniting researchers and practitioners. DELTA fosters collaboration to advance the understanding and management of drift in dynamic data landscapes by featuring keynotes, paper presentations, interactive sessions, and discussions.
2024
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024
concept drift; data drift; drift explanation; human-in-the-loop learning; incremental learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Workshop on Discovering Drift Phenomena in Evolving Data Landscape (DELTA) / Piangerelli, M.; Prenkaj, B.; Rotalinti, Y.; Joshi, A.; Stilo, G.. - (2024), pp. 6731-6732. (Intervento presentato al convegno 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024 tenutosi a Barcelona, Spain) [10.1145/3637528.3671492].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1723592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact