In this paper we are concerned with the number of critical points of solutions of nonlinear elliptic equations. We will deal with the case of non-convex, contractile and non-contractile planar domains. We will prove results on the estimate of their number as well as their index. In some cases we will provide the exact calculation. The toy problem concerns the multi- peak solutions of the Gel’fand problem, namely −Δu = λeu u=0 on ∂Ω, where Ω ⊂ R2 is a bounded smooth domain and λ > 0 is a small parameter.

On the critical points of solutions of PDE in non-convex settings: the case of concentrating solutions / Gladiali, F.; Grossi, M.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 287:11(2024). [10.1016/j.jfa.2024.110620]

On the critical points of solutions of PDE in non-convex settings: the case of concentrating solutions

Grossi, M.
Membro del Collaboration Group
2024

Abstract

In this paper we are concerned with the number of critical points of solutions of nonlinear elliptic equations. We will deal with the case of non-convex, contractile and non-contractile planar domains. We will prove results on the estimate of their number as well as their index. In some cases we will provide the exact calculation. The toy problem concerns the multi- peak solutions of the Gel’fand problem, namely −Δu = λeu u=0 on ∂Ω, where Ω ⊂ R2 is a bounded smooth domain and λ > 0 is a small parameter.
2024
Punti critici, problema di Gelfand, principio di massimo
01 Pubblicazione su rivista::01a Articolo in rivista
On the critical points of solutions of PDE in non-convex settings: the case of concentrating solutions / Gladiali, F.; Grossi, M.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 287:11(2024). [10.1016/j.jfa.2024.110620]
File allegati a questo prodotto
File Dimensione Formato  
Gladiali_PDE_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 665.84 kB
Formato Adobe PDF
665.84 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1723483
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact