We prove an homogenization result, in terms of Gamma-convergence, for energies concentrated on rectifiable lines in R-3 without boundary. The main application of our result is in the context of dislocation lines in dimension 3. The result presented here shows that the line tension energy of unions of single line defects converge to the energy associated to macroscopic densities of dislocations carrying plastic deformation. As a byproduct of our construction for the upper bound for the Gamma-Limit, we obtain an alternative proof of the density of rectifiable 1-currents without boundary in the space of divergence free fields.

Homogenization of line tension energies / Fortuna, M.; Garroni, A.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 250:(2024). [10.1016/j.na.2024.113656]

Homogenization of line tension energies

Fortuna, M.;Garroni, A.
2024

Abstract

We prove an homogenization result, in terms of Gamma-convergence, for energies concentrated on rectifiable lines in R-3 without boundary. The main application of our result is in the context of dislocation lines in dimension 3. The result presented here shows that the line tension energy of unions of single line defects converge to the energy associated to macroscopic densities of dislocations carrying plastic deformation. As a byproduct of our construction for the upper bound for the Gamma-Limit, we obtain an alternative proof of the density of rectifiable 1-currents without boundary in the space of divergence free fields.
2024
Gamma convergence; Dislocations; Divergence free fields; Homogenization
01 Pubblicazione su rivista::01a Articolo in rivista
Homogenization of line tension energies / Fortuna, M.; Garroni, A.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 250:(2024). [10.1016/j.na.2024.113656]
File allegati a questo prodotto
File Dimensione Formato  
Fortuna_Homogenization of line_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 748.72 kB
Formato Adobe PDF
748.72 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1723374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact