Electrical Signature Analysis (ESA) is a powerful tool that uses the voltage and current signals of a machine to infer its health status. ESA can serve as a predictive maintenance tool for detecting common faults at an early stage, thus preventing expensive catastrophic failures and production outages, and extending equipment lifetime. In this study, a novel application of ESA and Machine Learning (ML) for working condition monitoring and health status assessment of a CNC mill is presented. Experimental results show the effectiveness of the proposed approach.

Anomaly detection using electrical signature analysis and machine learning:application to a CNC mill / Cocca, P.; Gökan, M.; Pesenti, V.; Stefana, E.; Bortolani, R.; Romagnoli, D.. - 58:8(2024), pp. 139-144. (Intervento presentato al convegno 6th IFAC Workshop on Advanced Maintenance Engineering, Services and Technologies, AMEST 2024 tenutosi a Cagliari, Italy) [10.1016/j.ifacol.2024.08.063].

Anomaly detection using electrical signature analysis and machine learning:application to a CNC mill

Stefana, E.;
2024

Abstract

Electrical Signature Analysis (ESA) is a powerful tool that uses the voltage and current signals of a machine to infer its health status. ESA can serve as a predictive maintenance tool for detecting common faults at an early stage, thus preventing expensive catastrophic failures and production outages, and extending equipment lifetime. In this study, a novel application of ESA and Machine Learning (ML) for working condition monitoring and health status assessment of a CNC mill is presented. Experimental results show the effectiveness of the proposed approach.
2024
6th IFAC Workshop on Advanced Maintenance Engineering, Services and Technologies, AMEST 2024
Anomaly detectioncondition monitoringhealth status assessmentmachine learningCNC millelectrical signature analysis
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Anomaly detection using electrical signature analysis and machine learning:application to a CNC mill / Cocca, P.; Gökan, M.; Pesenti, V.; Stefana, E.; Bortolani, R.; Romagnoli, D.. - 58:8(2024), pp. 139-144. (Intervento presentato al convegno 6th IFAC Workshop on Advanced Maintenance Engineering, Services and Technologies, AMEST 2024 tenutosi a Cagliari, Italy) [10.1016/j.ifacol.2024.08.063].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1722918
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact