Electrical Signature Analysis (ESA) is a powerful tool that uses the voltage and current signals of a machine to infer its health status. ESA can serve as a predictive maintenance tool for detecting common faults at an early stage, thus preventing expensive catastrophic failures and production outages, and extending equipment lifetime. In this study, a novel application of ESA and Machine Learning (ML) for working condition monitoring and health status assessment of a CNC mill is presented. Experimental results show the effectiveness of the proposed approach.

Anomaly detection using electrical signature analysis and machine learning:application to a CNC mill / Cocca, P.; Gökan, M.; Pesenti, V.; Stefana, E.; Bortolani, R.; Romagnoli, D.. - 58:8(2024), pp. 139-144. (Intervento presentato al convegno 6th IFAC Workshop on Advanced Maintenance Engineering, Services and Technologies, AMEST 2024 tenutosi a Cagliari, Italy) [10.1016/j.ifacol.2024.08.063].

Anomaly detection using electrical signature analysis and machine learning:application to a CNC mill

Stefana, E.;
2024

Abstract

Electrical Signature Analysis (ESA) is a powerful tool that uses the voltage and current signals of a machine to infer its health status. ESA can serve as a predictive maintenance tool for detecting common faults at an early stage, thus preventing expensive catastrophic failures and production outages, and extending equipment lifetime. In this study, a novel application of ESA and Machine Learning (ML) for working condition monitoring and health status assessment of a CNC mill is presented. Experimental results show the effectiveness of the proposed approach.
2024
6th IFAC Workshop on Advanced Maintenance Engineering, Services and Technologies, AMEST 2024
anomaly; detection; condition monitoring; health status; assessment; machine learning; cnc mill;electrical signature analys
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Anomaly detection using electrical signature analysis and machine learning:application to a CNC mill / Cocca, P.; Gökan, M.; Pesenti, V.; Stefana, E.; Bortolani, R.; Romagnoli, D.. - 58:8(2024), pp. 139-144. (Intervento presentato al convegno 6th IFAC Workshop on Advanced Maintenance Engineering, Services and Technologies, AMEST 2024 tenutosi a Cagliari, Italy) [10.1016/j.ifacol.2024.08.063].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1722918
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact