We quantify the statistical properties of the potential energy landscape for a recently proposed machine learning coarse grained model for water, machine learning-bond-order potential [Chan et al., Nat. Commun. 10, 379 (2019)]. We find that the landscape can be accurately modeled as a Gaussian landscape at all densities. The resulting landscape-based free-energy expression accurately describes the model properties in a very wide range of temperatures and densities. The density dependence of the Gaussian landscape parameters [total number of inherent structures (ISs), characteristic IS energy scale, and variance of the IS energy distribution] predicts the presence of a liquid-liquid transition located close to P = 1750 +/- 100 bars and T = 181.5 +/- 1 K.

Potential energy landscape of a coarse grained model for water. ML-BOP / Neophytou, Andreas; Sciortino, Francesco. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 160:11(2024), pp. 1-9. [10.1063/5.0197613]

Potential energy landscape of a coarse grained model for water. ML-BOP

Neophytou, Andreas;Sciortino, Francesco
2024

Abstract

We quantify the statistical properties of the potential energy landscape for a recently proposed machine learning coarse grained model for water, machine learning-bond-order potential [Chan et al., Nat. Commun. 10, 379 (2019)]. We find that the landscape can be accurately modeled as a Gaussian landscape at all densities. The resulting landscape-based free-energy expression accurately describes the model properties in a very wide range of temperatures and densities. The density dependence of the Gaussian landscape parameters [total number of inherent structures (ISs), characteristic IS energy scale, and variance of the IS energy distribution] predicts the presence of a liquid-liquid transition located close to P = 1750 +/- 100 bars and T = 181.5 +/- 1 K.
2024
liquid-liquid transition; supercooled water; structural properties
01 Pubblicazione su rivista::01a Articolo in rivista
Potential energy landscape of a coarse grained model for water. ML-BOP / Neophytou, Andreas; Sciortino, Francesco. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 160:11(2024), pp. 1-9. [10.1063/5.0197613]
File allegati a questo prodotto
File Dimensione Formato  
Neophytou_Potential-energy-landscape_2024.pdf

solo gestori archivio

Note: Articolo su rivista
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.63 MB
Formato Adobe PDF
4.63 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1722813
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact