Viral nanoparticles are molecular cages derived from the assembly of viral structural proteins. They bear several peculiar features as proper dimensions for nanoscale applications, size homogeneity, an intrinsic robustness, a large surface area to mass ratio and a defined, repetitive and symmetric macromolecular organization. A number of expression strategies, using various biological systems, efficiently enable the production of significant quantities of viral nanoparticles, which can be easily purified. Genetic engineering and in vitro chemical modification consent to manipulate of the outer and inner surface of these nanocages, allowing specific changes of the original physico-chemical and biological properties. Moreover, several studies have focused on the in vitro disassembly/reassembly and gating of viral nanoparticles, with the aim of encapsulating exogenous molecules inside and therefore improving their potential as containment delivery devices. These technological progresses have led research to a growing variety of applications in different fields such as biomedicine, pharmacology, separation science, catalytic chemistry, crop pest control and material science. In this review we will focus on the strategies used to modify the characteristics of viral nanoparticles and on their use in biomedicine and pharmacology.

Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches / Grasso, S; Santi, L. - In: INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY. - ISSN 1944-8171. - 2:2(2010), pp. 161-178.

Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches

Santi L
2010

Abstract

Viral nanoparticles are molecular cages derived from the assembly of viral structural proteins. They bear several peculiar features as proper dimensions for nanoscale applications, size homogeneity, an intrinsic robustness, a large surface area to mass ratio and a defined, repetitive and symmetric macromolecular organization. A number of expression strategies, using various biological systems, efficiently enable the production of significant quantities of viral nanoparticles, which can be easily purified. Genetic engineering and in vitro chemical modification consent to manipulate of the outer and inner surface of these nanocages, allowing specific changes of the original physico-chemical and biological properties. Moreover, several studies have focused on the in vitro disassembly/reassembly and gating of viral nanoparticles, with the aim of encapsulating exogenous molecules inside and therefore improving their potential as containment delivery devices. These technological progresses have led research to a growing variety of applications in different fields such as biomedicine, pharmacology, separation science, catalytic chemistry, crop pest control and material science. In this review we will focus on the strategies used to modify the characteristics of viral nanoparticles and on their use in biomedicine and pharmacology.
2010
Nanoparticle; Virus particle; Virus like particle
01 Pubblicazione su rivista::01a Articolo in rivista
Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches / Grasso, S; Santi, L. - In: INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY. - ISSN 1944-8171. - 2:2(2010), pp. 161-178.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1722738
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? ND
social impact