Ocular artifacts, including blinks and saccades, pose significant challenges in the analysis of electroencephalographic (EEG) data, often obscuring crucial neural signals. This tutorial provides a comprehensive guide to the most effective methods for correcting these artifacts, with a focus on algorithms designed for both laboratory and real-world settings. We review traditional approaches, such as regression-based techniques and Independent Component Analysis (ICA), alongside more advanced methods like Artifact Subspace Reconstruction (ASR) and deep learning-based algorithms. Through detailed step-by-step instructions and comparative analysis, this tutorial equips researchers with the tools necessary to maintain the integrity of EEG data, ensuring accurate and reliable results in neurophysiological studies. The strategies discussed are particularly relevant for wearable EEG systems and real-time applications, reflecting the growing demand for robust and adaptable solutions in applied neuroscience.

Optimizing EEG Signal Integrity: A Comprehensive Guide to Ocular Artifact Correction / Ronca, Vincenzo; Capotorto, Rossella; Di Flumeri, Gianluca; Giorgi, Andrea; Vozzi, Alessia; Germano, Daniele; Virgilio, Valerio Di; Borghini, Gianluca; Cartocci, Giulia; Rossi, Dario; Inguscio, Bianca M. S.; Babiloni, Fabio; Aricò, Pietro. - In: BIOENGINEERING. - ISSN 2306-5354. - 11:10(2024). [10.3390/bioengineering11101018]

Optimizing EEG Signal Integrity: A Comprehensive Guide to Ocular Artifact Correction

Ronca, Vincenzo
Primo
;
Capotorto, Rossella;Di Flumeri, Gianluca;Giorgi, Andrea;Vozzi, Alessia;Germano, Daniele;Virgilio, Valerio Di;Borghini, Gianluca;Cartocci, Giulia;Rossi, Dario;Inguscio, Bianca M. S.;Babiloni, Fabio;Aricò, Pietro
Ultimo
2024

Abstract

Ocular artifacts, including blinks and saccades, pose significant challenges in the analysis of electroencephalographic (EEG) data, often obscuring crucial neural signals. This tutorial provides a comprehensive guide to the most effective methods for correcting these artifacts, with a focus on algorithms designed for both laboratory and real-world settings. We review traditional approaches, such as regression-based techniques and Independent Component Analysis (ICA), alongside more advanced methods like Artifact Subspace Reconstruction (ASR) and deep learning-based algorithms. Through detailed step-by-step instructions and comparative analysis, this tutorial equips researchers with the tools necessary to maintain the integrity of EEG data, ensuring accurate and reliable results in neurophysiological studies. The strategies discussed are particularly relevant for wearable EEG systems and real-time applications, reflecting the growing demand for robust and adaptable solutions in applied neuroscience.
2024
EEG; signal processing; ocular artifacts
01 Pubblicazione su rivista::01a Articolo in rivista
Optimizing EEG Signal Integrity: A Comprehensive Guide to Ocular Artifact Correction / Ronca, Vincenzo; Capotorto, Rossella; Di Flumeri, Gianluca; Giorgi, Andrea; Vozzi, Alessia; Germano, Daniele; Virgilio, Valerio Di; Borghini, Gianluca; Cartocci, Giulia; Rossi, Dario; Inguscio, Bianca M. S.; Babiloni, Fabio; Aricò, Pietro. - In: BIOENGINEERING. - ISSN 2306-5354. - 11:10(2024). [10.3390/bioengineering11101018]
File allegati a questo prodotto
File Dimensione Formato  
Ronca_Optimizing_2024.pdf

accesso aperto

Note: Tutorial
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.13 MB
Formato Adobe PDF
4.13 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1722479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact