In this paper, we prove existence of weak solutions in W1,20 (Ω) ∩L∞ (Ω) for the gradient coupled Dirichlet system (equation presented). We also prove that if f (x), g(x) ≈ ¥ 0 (of course ≈ ¢ 0 a.e.), then u(x), (x) ≈ ¥ 0 and the sets {u = 0} and {φ = 0} have zero Lebesgue measure.

Existence of solutions for gradient coupled Dirichlet systems / Boccardo, L.; Orsina, L.. - In: ESAIM. COCV. - ISSN 1292-8119. - 30:(2024). [10.1051/cocv/2024011]

Existence of solutions for gradient coupled Dirichlet systems

Boccardo L.
;
Orsina L.
2024

Abstract

In this paper, we prove existence of weak solutions in W1,20 (Ω) ∩L∞ (Ω) for the gradient coupled Dirichlet system (equation presented). We also prove that if f (x), g(x) ≈ ¥ 0 (of course ≈ ¢ 0 a.e.), then u(x), (x) ≈ ¥ 0 and the sets {u = 0} and {φ = 0} have zero Lebesgue measure.
2024
Elliptic systems; first order coupling; regularizing effect; weak maximum principle
01 Pubblicazione su rivista::01a Articolo in rivista
Existence of solutions for gradient coupled Dirichlet systems / Boccardo, L.; Orsina, L.. - In: ESAIM. COCV. - ISSN 1292-8119. - 30:(2024). [10.1051/cocv/2024011]
File allegati a questo prodotto
File Dimensione Formato  
Boccardo_Existence-of-solutions_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 539.86 kB
Formato Adobe PDF
539.86 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1722383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact