Direct numerical simulation (DNS) of rotating pipe flows up to Reτ ≈ 3000 is carried out to investigate drag reduction effects associated with axial rotation, extending previous studies carried out at a modest Reynolds number (Orlandi & Fatica, J. Fluid Mech., vol. 343, 1997, pp. 43–72; Orlandi & Ebstein, Intl J. Heat Fluid Flow, vol. 21, 2000, pp. 499–505). The results show that the drag reduction, which we theoretically show to be equivalent to net power saving assuming no mechanical losses, monotonically increases as either the Reynolds number or the rotation number increases, proportionally to the inner-scaled rotational speed. Net drag reduction up to approximately 70 % is observed, while being far from flow relaminarisation. Scaling laws for the mean axial and azimuthal velocity are proposed, from which a predictive formula for the friction factor is derived. The formula can correctly represent the dependency of the friction factor on the Reynolds and rotation numbers, maintaining good accuracy for low-to-moderate rotation numbers. Examination of the turbulent structures highlights the role of rotation in widening and elongating the small-scale streaks, with subsequent suppression of sweeps and ejections. In the core part of the flow, clear weakening of large-scale turbulent motions is observed at high Reynolds numbers, with subsequent suppression of the outer-layer peak in the pre-multiplied spectra. The Fukagata–Iwamoto–Kasagi decomposition indicates that, consistent with a theoretically derived formula, the outer layer yields the largest contribution to drag reduction at increasingly high Reynolds numbers. In contrast, both the inner and the outer layers contribute to drag reduction as the rotation number increases.

Direct numerical simulation of drag reduction in rotating pipe flow up to Reτ ≈ 3000 / Xiao, Maochao; Ceci, Alessandro; Orlandi, Paolo; Pirozzoli, Sergio. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - 996:(2024). [10.1017/jfm.2024.811]

Direct numerical simulation of drag reduction in rotating pipe flow up to Reτ ≈ 3000

Xiao, Maochao
Primo
;
Ceci, Alessandro
Secondo
;
Orlandi, Paolo
Penultimo
;
Pirozzoli, Sergio
Ultimo
2024

Abstract

Direct numerical simulation (DNS) of rotating pipe flows up to Reτ ≈ 3000 is carried out to investigate drag reduction effects associated with axial rotation, extending previous studies carried out at a modest Reynolds number (Orlandi & Fatica, J. Fluid Mech., vol. 343, 1997, pp. 43–72; Orlandi & Ebstein, Intl J. Heat Fluid Flow, vol. 21, 2000, pp. 499–505). The results show that the drag reduction, which we theoretically show to be equivalent to net power saving assuming no mechanical losses, monotonically increases as either the Reynolds number or the rotation number increases, proportionally to the inner-scaled rotational speed. Net drag reduction up to approximately 70 % is observed, while being far from flow relaminarisation. Scaling laws for the mean axial and azimuthal velocity are proposed, from which a predictive formula for the friction factor is derived. The formula can correctly represent the dependency of the friction factor on the Reynolds and rotation numbers, maintaining good accuracy for low-to-moderate rotation numbers. Examination of the turbulent structures highlights the role of rotation in widening and elongating the small-scale streaks, with subsequent suppression of sweeps and ejections. In the core part of the flow, clear weakening of large-scale turbulent motions is observed at high Reynolds numbers, with subsequent suppression of the outer-layer peak in the pre-multiplied spectra. The Fukagata–Iwamoto–Kasagi decomposition indicates that, consistent with a theoretically derived formula, the outer layer yields the largest contribution to drag reduction at increasingly high Reynolds numbers. In contrast, both the inner and the outer layers contribute to drag reduction as the rotation number increases.
2024
pipe flow boundary layer; drag reduction; rotating turbulence
01 Pubblicazione su rivista::01a Articolo in rivista
Direct numerical simulation of drag reduction in rotating pipe flow up to Reτ ≈ 3000 / Xiao, Maochao; Ceci, Alessandro; Orlandi, Paolo; Pirozzoli, Sergio. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - 996:(2024). [10.1017/jfm.2024.811]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1721677
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact