Agricultural drought is one of the most critical effects of climate change. This work proposes a machine learning based approach for agricultural drought monitoring that integrates seven standard remote sensing indices computed from Sentinel-2 multispectral imagery, agricultural drought damage percentage assessed in situ and six meteo-climatic variables, including Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index. We applied the approach to 117 agricultural fields in Italy, using a multinomial logistic regression model to classify the fields into zero-risk, medium-risk, and high-risk drought damage classes. The overall performances of the proposed classification model, summarized by an F1 score equal to 0.61, are not particularly encouraging as the model struggles to distinguish between medium-risk damage and high-risk damage classes. Nonetheless, the model shows promising results in identifying fields with zero drought damage and could be applied to reduce the time and cost of in situ measurements by excluding fields with no damage from the ground data collection.

Integration of Remote Sensing, Ground Data and Meteo-Climatic Variables for Agricultural Drought Monitoring: First Results of a Data-Driven Approach / Bocchino, F.; Contu, R.; Ranaldi, L.; Denaro, A.; Rosatelli, L.; Zaccarini, C.; Tapete, D.; Ursi, A.; Virelli, M.; Sacco, P.; Belloni, V.; Ravanelli, R.; Crespi, M.. - 58:(2024), pp. 4890-4894. (Intervento presentato al convegno 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 tenutosi a Atene, Grecia) [10.1109/IGARSS53475.2024.10641154].

Integration of Remote Sensing, Ground Data and Meteo-Climatic Variables for Agricultural Drought Monitoring: First Results of a Data-Driven Approach

Bocchino F.;Contu R.;Ranaldi L.;Virelli M.;Belloni V.;Ravanelli R.;Crespi M.
2024

Abstract

Agricultural drought is one of the most critical effects of climate change. This work proposes a machine learning based approach for agricultural drought monitoring that integrates seven standard remote sensing indices computed from Sentinel-2 multispectral imagery, agricultural drought damage percentage assessed in situ and six meteo-climatic variables, including Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index. We applied the approach to 117 agricultural fields in Italy, using a multinomial logistic regression model to classify the fields into zero-risk, medium-risk, and high-risk drought damage classes. The overall performances of the proposed classification model, summarized by an F1 score equal to 0.61, are not particularly encouraging as the model struggles to distinguish between medium-risk damage and high-risk damage classes. Nonetheless, the model shows promising results in identifying fields with zero drought damage and could be applied to reduce the time and cost of in situ measurements by excluding fields with no damage from the ground data collection.
2024
2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024
Agricultural drought; Machine Learning; Meteo-climatic variables; Sentinel-2; Spectral indices
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Integration of Remote Sensing, Ground Data and Meteo-Climatic Variables for Agricultural Drought Monitoring: First Results of a Data-Driven Approach / Bocchino, F.; Contu, R.; Ranaldi, L.; Denaro, A.; Rosatelli, L.; Zaccarini, C.; Tapete, D.; Ursi, A.; Virelli, M.; Sacco, P.; Belloni, V.; Ravanelli, R.; Crespi, M.. - 58:(2024), pp. 4890-4894. (Intervento presentato al convegno 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 tenutosi a Atene, Grecia) [10.1109/IGARSS53475.2024.10641154].
File allegati a questo prodotto
File Dimensione Formato  
Bocchino_Integration-of-remote-sensing_2024.pdf

solo gestori archivio

Note: contributo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 883.5 kB
Formato Adobe PDF
883.5 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1721652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact