We study the possibility of using the LiteBIRD satellite B-mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar "axionlike"field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from LiteBIRD satellite simulations, which complement and expand previous studies in the literature. We find that LiteBIRD will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the TB and EB angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of LiteBIRD will reside in BB angular power spectra rather than in TB and EB correlations.

LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization / Campeti, P.; Komatsu, E.; Baccigalupi, C.; Ballardini, M.; Bartolo, N.; Carones, A.; Errard, J.; Finelli, F.; Flauger, R.; Galli, S.; Galloni, G.; Giardiello, S.; Hazumi, M.; Henrot-Versille, S.; Hergt, L. T.; Kohri, K.; Leloup, C.; Lesgourgues, J.; Macias-Perez, J.; Martinez-Gonzalez, E.; Matarrese, S.; Matsumura, T.; Montier, L.; Namikawa, T.; Paoletti, D.; Poletti, D.; Remazeilles, M.; Shiraishi, M.; van Tent, B.; Tristram, M.; Vacher, L.; Vittorio, N.; Weymann-Despres, G.; Anand, A.; Aumont, J.; Aurlien, R.; Banday, A. J.; Barreiro, R. B.; Basyrov, A.; Bersanelli, M.; Blinov, D.; Bortolami, M.; Brinckmann, T.; Calabrese, E.; Carralot, F.; Casas, F. J.; Clermont, L.; Columbro, F.; Conenna, G.; Coppolecchia, A.; Cuttaia, F.; D'Alessandro, G.; de Bernardis, P.; De Petris, M.; Della Torre, S.; Di Giorgi, E.; Diego-Palazuelos, P.; Eriksen, H. K.; Franceschet, C.; Fuskeland, U.; Galloway, M.; Georges, M.; Gerbino, M.; Gervasi, M.; Ghigna, T.; Gimeno-Amo, C.; Gjerlow, E.; Gruppuso, A.; Gudmundsson, J. E.; Krachmalnicoff, N.; Lamagna, L.; Lattanzi, M.; Lembo, M.; Lonappan, A. I.; Masi, S.; Massa, M.; Micheli, S.; Moggi, A.; Monelli, M.; Morgante, G.; Mot, B.; Mousset, L.; Nagata, R.; Natoli, P.; Novelli, A.; Obata, I.; Pagano, L.; Paiella, A.; Pavlidou, V.; Piacentini, F.; Pinchera, M.; Pisano, G.; Puglisi, G.; Raffuzzi, N.; Ritacco, A.; Rizzieri, A.; Ruiz-Granda, M.; Savini, G.; Scott, D.; Signorelli, G.; Stever, S. L.; Stutzer, N.; Sullivan, R. M.; Tartari, A.; Tassis, K.; Terenzi, L.; Thompson, K. L.; Vielva, P.; Wehus, I. K.; Zhou, Y.. - In: JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. - ISSN 1475-7516. - 2024:6(2024), pp. 1-37. [10.1088/1475-7516/2024/06/008]

LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization

Anand A.;Columbro F.;Coppolecchia A.;D'Alessandro G.;de Bernardis P.;De Petris M.;Lamagna L.;Masi S.;Micheli S.;Novelli A.;Paiella A.;Piacentini F.;Pisano G.;
2024

Abstract

We study the possibility of using the LiteBIRD satellite B-mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar "axionlike"field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from LiteBIRD satellite simulations, which complement and expand previous studies in the literature. We find that LiteBIRD will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the TB and EB angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of LiteBIRD will reside in BB angular power spectra rather than in TB and EB correlations.
2024
CMBR experiments; gravitational waves and CMBR polarization; inflation; primordial gravitational waves (theory)
01 Pubblicazione su rivista::01a Articolo in rivista
LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization / Campeti, P.; Komatsu, E.; Baccigalupi, C.; Ballardini, M.; Bartolo, N.; Carones, A.; Errard, J.; Finelli, F.; Flauger, R.; Galli, S.; Galloni, G.; Giardiello, S.; Hazumi, M.; Henrot-Versille, S.; Hergt, L. T.; Kohri, K.; Leloup, C.; Lesgourgues, J.; Macias-Perez, J.; Martinez-Gonzalez, E.; Matarrese, S.; Matsumura, T.; Montier, L.; Namikawa, T.; Paoletti, D.; Poletti, D.; Remazeilles, M.; Shiraishi, M.; van Tent, B.; Tristram, M.; Vacher, L.; Vittorio, N.; Weymann-Despres, G.; Anand, A.; Aumont, J.; Aurlien, R.; Banday, A. J.; Barreiro, R. B.; Basyrov, A.; Bersanelli, M.; Blinov, D.; Bortolami, M.; Brinckmann, T.; Calabrese, E.; Carralot, F.; Casas, F. J.; Clermont, L.; Columbro, F.; Conenna, G.; Coppolecchia, A.; Cuttaia, F.; D'Alessandro, G.; de Bernardis, P.; De Petris, M.; Della Torre, S.; Di Giorgi, E.; Diego-Palazuelos, P.; Eriksen, H. K.; Franceschet, C.; Fuskeland, U.; Galloway, M.; Georges, M.; Gerbino, M.; Gervasi, M.; Ghigna, T.; Gimeno-Amo, C.; Gjerlow, E.; Gruppuso, A.; Gudmundsson, J. E.; Krachmalnicoff, N.; Lamagna, L.; Lattanzi, M.; Lembo, M.; Lonappan, A. I.; Masi, S.; Massa, M.; Micheli, S.; Moggi, A.; Monelli, M.; Morgante, G.; Mot, B.; Mousset, L.; Nagata, R.; Natoli, P.; Novelli, A.; Obata, I.; Pagano, L.; Paiella, A.; Pavlidou, V.; Piacentini, F.; Pinchera, M.; Pisano, G.; Puglisi, G.; Raffuzzi, N.; Ritacco, A.; Rizzieri, A.; Ruiz-Granda, M.; Savini, G.; Scott, D.; Signorelli, G.; Stever, S. L.; Stutzer, N.; Sullivan, R. M.; Tartari, A.; Tassis, K.; Terenzi, L.; Thompson, K. L.; Vielva, P.; Wehus, I. K.; Zhou, Y.. - In: JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. - ISSN 1475-7516. - 2024:6(2024), pp. 1-37. [10.1088/1475-7516/2024/06/008]
File allegati a questo prodotto
File Dimensione Formato  
Campeti_LiteBIRD_2024.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 13.69 MB
Formato Adobe PDF
13.69 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1721457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact