In this paper we state some sharp maximum principle, i.e. we characterize the geometry of the sets of minima for supersolutions of equations involving the k-th fractional truncated Laplacian or the k-th fractional eigenvalue which are fully nonlinear integral operators whose nonlocality is somehow k-dimensional.
Propagation of minima for nonlocal operators / Birindelli, Isabella; Galise, Giulio; Ishii, Hitoshi. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 154:4(2024), pp. 1033-1046. [10.1017/prm.2023.49]
Propagation of minima for nonlocal operators
Birindelli, Isabella;Galise, Giulio
;Ishii, Hitoshi
2024
Abstract
In this paper we state some sharp maximum principle, i.e. we characterize the geometry of the sets of minima for supersolutions of equations involving the k-th fractional truncated Laplacian or the k-th fractional eigenvalue which are fully nonlinear integral operators whose nonlocality is somehow k-dimensional.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Birindelli_Propagation_2024.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
314.48 kB
Formato
Adobe PDF
|
314.48 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.