We prove a quantitative functional central limit theorem for one-hidden-layer neural networks with generic activation function. Our rates of convergence depend heavily on the smoothness of the activation function, and they range from logarithmic for nondifferentiable nonlinearities such as the ReLu to root n for highly regular activations. Our main tools are based on functional versions of the Stein-Malliavin method; in particular, we rely on a quantitative functional central limit theorem which has been recently established by Bourguin and Campese [Electron. J. Probab. 25 (2020), 150].

A quantitative functional central limit theorem for shallow neural networks / Cammarota, V.; Marinucci, D.; Salvi, M.; Vigogna, S.. - In: MODERN STOCHASTICS: THEORY AND APPLICATIONS. - ISSN 2351-6054. - 11:1(2024), pp. 85-108. [10.15559/23-VMSTA238]

A quantitative functional central limit theorem for shallow neural networks

Cammarota V.
Membro del Collaboration Group
;
2024

Abstract

We prove a quantitative functional central limit theorem for one-hidden-layer neural networks with generic activation function. Our rates of convergence depend heavily on the smoothness of the activation function, and they range from logarithmic for nondifferentiable nonlinearities such as the ReLu to root n for highly regular activations. Our main tools are based on functional versions of the Stein-Malliavin method; in particular, we rely on a quantitative functional central limit theorem which has been recently established by Bourguin and Campese [Electron. J. Probab. 25 (2020), 150].
2024
Quantitative functional central limit theorem; Wiener-chaos expansions; neural networks; Gaussian processes
01 Pubblicazione su rivista::01a Articolo in rivista
A quantitative functional central limit theorem for shallow neural networks / Cammarota, V.; Marinucci, D.; Salvi, M.; Vigogna, S.. - In: MODERN STOCHASTICS: THEORY AND APPLICATIONS. - ISSN 2351-6054. - 11:1(2024), pp. 85-108. [10.15559/23-VMSTA238]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1720964
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact