We prove homogenization for viscous Hamilton-Jacobi equations with a Hamiltonian of the form G(p)+V(x,omega) for a wide class of stationary ergodic random media in one space dimension. The momentum part G(p) of the Hamiltonian is a general (nonconvex) continuous function with superlinear growth at infinity, and the potential V(x,omega) is bounded and Lipschitz continuous. The class of random media we consider is defined by an explicit hill and valley condition on the diffusivity-potential pair which is fulfilled as long as the environment is not "rigid".

Stochastic homogenization of nonconvex viscous Hamilton-Jacobi equations in one space dimension / Davini, Andrea; Kosygina, Elena; Yilmaz, Atilla. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - 49:7-8(2024), pp. 698-734. [10.1080/03605302.2024.2390836]

Stochastic homogenization of nonconvex viscous Hamilton-Jacobi equations in one space dimension

Davini, Andrea;
2024

Abstract

We prove homogenization for viscous Hamilton-Jacobi equations with a Hamiltonian of the form G(p)+V(x,omega) for a wide class of stationary ergodic random media in one space dimension. The momentum part G(p) of the Hamiltonian is a general (nonconvex) continuous function with superlinear growth at infinity, and the potential V(x,omega) is bounded and Lipschitz continuous. The class of random media we consider is defined by an explicit hill and valley condition on the diffusivity-potential pair which is fulfilled as long as the environment is not "rigid".
2024
Viscous Hamilton-Jacobi equation; stochastic homogenization; stationary ergodic random environment; sublinear corrector; viscosity solution; scaled hill and valley condition
01 Pubblicazione su rivista::01a Articolo in rivista
Stochastic homogenization of nonconvex viscous Hamilton-Jacobi equations in one space dimension / Davini, Andrea; Kosygina, Elena; Yilmaz, Atilla. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - 49:7-8(2024), pp. 698-734. [10.1080/03605302.2024.2390836]
File allegati a questo prodotto
File Dimensione Formato  
Davini_Stochastic homogenization_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1720820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact