A one-dimensional system of electrons on a lattice, interacting with a periodic potential, with period incommensurate with the lattice spacing and satisfying a Diophantine condition, is considered in the case of strong interaction. The Schwinger functions are computed and their asymptotic behaviour is studied, proving Anderson localization. The decay of the Schwinger functions is shown to depend critically on the value of the chemical potential.

Anderson localization for the Holstein model / Gentile, G.; Mastropietro, V.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 215:(2000), pp. 69-103. [10.1007/s002200215069]

Anderson localization for the Holstein model

V. Mastropietro
2000

Abstract

A one-dimensional system of electrons on a lattice, interacting with a periodic potential, with period incommensurate with the lattice spacing and satisfying a Diophantine condition, is considered in the case of strong interaction. The Schwinger functions are computed and their asymptotic behaviour is studied, proving Anderson localization. The decay of the Schwinger functions is shown to depend critically on the value of the chemical potential.
2000
Schwinger functions; one-dimensional systems; electrons; Lyapunov exponent; cocycle; Schrödinger operator
01 Pubblicazione su rivista::01a Articolo in rivista
Anderson localization for the Holstein model / Gentile, G.; Mastropietro, V.. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 215:(2000), pp. 69-103. [10.1007/s002200215069]
File allegati a questo prodotto
File Dimensione Formato  
Gentile_Anderson-localization_2000.pdf

solo gestori archivio

Note: Articolo rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 259.48 kB
Formato Adobe PDF
259.48 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1720788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact