The information contained in hierarchical topology, intrinsic to many networks, is currently underutilised. A novel architecture is explored which exploits this information through a multiscale decomposition. A dendrogram is produced by a Girvan-Newman hierarchical clustering algorithm. It is segmented and fed through graph convolutional layers, allowing the architecture to learn multiple scale latent space representations of the network, from fine to coarse grained. The architecture is tested on a benchmark citation network, demonstrating competitive performance. Given the abundance of hierarchical networks, possible applications include quantum molecular property prediction, protein interface prediction and multiscale computational substrates for partial differential equations.

A Multiscale Graph Convolutional Network Using Hierarchical Clustering / Lipov, A.; Lio, P.. - 1364:(2021), pp. 489-506. (Intervento presentato al convegno Future of Information and Communication Conference, FICC 2021 tenutosi a Cagliari; Italy) [10.1007/978-3-030-73103-8_35].

A Multiscale Graph Convolutional Network Using Hierarchical Clustering

Lio P.
2021

Abstract

The information contained in hierarchical topology, intrinsic to many networks, is currently underutilised. A novel architecture is explored which exploits this information through a multiscale decomposition. A dendrogram is produced by a Girvan-Newman hierarchical clustering algorithm. It is segmented and fed through graph convolutional layers, allowing the architecture to learn multiple scale latent space representations of the network, from fine to coarse grained. The architecture is tested on a benchmark citation network, demonstrating competitive performance. Given the abundance of hierarchical networks, possible applications include quantum molecular property prediction, protein interface prediction and multiscale computational substrates for partial differential equations.
2021
Future of Information and Communication Conference, FICC 2021
Graph neural networks; Hierarchical clustering; Multiscale analysis
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A Multiscale Graph Convolutional Network Using Hierarchical Clustering / Lipov, A.; Lio, P.. - 1364:(2021), pp. 489-506. (Intervento presentato al convegno Future of Information and Communication Conference, FICC 2021 tenutosi a Cagliari; Italy) [10.1007/978-3-030-73103-8_35].
File allegati a questo prodotto
File Dimensione Formato  
Lipov_preprint_A-Multiscale_2021.pdf

accesso aperto

Note: https://link.springer.com/chapter/10.1007/978-3-030-73103-8_35
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF
Lipov_A-Multiscale_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1720244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact