A fundamental problem of interest to policy makers, urban planners, and other stakeholders involved in urban development is assessing the impact of planning and construction activities on mobility flows. This is a challenging task due to the different spatial, temporal, social, and economic factors influencing urban mobility flows. These flows, along with the influencing factors, can be modelled as attributed graphs with both node and edge features characterising locations in a city and the various types of relationships between them. In this paper, we address the problem of assessing origin-destination (OD) car flows between a location of interest and every other location in a city, given their features and the structural characteristics of the graph. We propose three neural network architectures, including graph neural networks (GNN), and conduct a systematic comparison between the proposed methods and state-of-the-art spatial interaction models, their modifications, and machine learning approaches. The objective of the paper is to address the practical problem of estimating potential flow between an urban project location and other locations in the city, where the features of the project location are known in advance. We evaluate the performance of the models on a regression task using a custom data set of attributed car OD flows in London. We also visualise the model performance by showing the spatial distribution of flow residuals across London.

Learning Mobility Flows from Urban Features with Spatial Interaction Models and Neural Networks**To appear in the Proceedings of 2020 IEEE International Conference on Smart Computing (SMARTCOMP 2020) / Yeghikyan, G.; Opolka, F. L.; Nanni, M.; Lepri, B.; Lio, P.. - (2020), pp. 57-64. (Intervento presentato al convegno 6th IEEE International Conference on Smart Computing, SMARTCOMP 2020 tenutosi a Virtual, Bologna) [10.1109/SMARTCOMP50058.2020.00028].

Learning Mobility Flows from Urban Features with Spatial Interaction Models and Neural Networks**To appear in the Proceedings of 2020 IEEE International Conference on Smart Computing (SMARTCOMP 2020)

Lio P.
2020

Abstract

A fundamental problem of interest to policy makers, urban planners, and other stakeholders involved in urban development is assessing the impact of planning and construction activities on mobility flows. This is a challenging task due to the different spatial, temporal, social, and economic factors influencing urban mobility flows. These flows, along with the influencing factors, can be modelled as attributed graphs with both node and edge features characterising locations in a city and the various types of relationships between them. In this paper, we address the problem of assessing origin-destination (OD) car flows between a location of interest and every other location in a city, given their features and the structural characteristics of the graph. We propose three neural network architectures, including graph neural networks (GNN), and conduct a systematic comparison between the proposed methods and state-of-the-art spatial interaction models, their modifications, and machine learning approaches. The objective of the paper is to address the practical problem of estimating potential flow between an urban project location and other locations in the city, where the features of the project location are known in advance. We evaluate the performance of the models on a regression task using a custom data set of attributed car OD flows in London. We also visualise the model performance by showing the spatial distribution of flow residuals across London.
2020
6th IEEE International Conference on Smart Computing, SMARTCOMP 2020
graph neural networks; spatial interaction models; urban computing; urban mobility flows
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Learning Mobility Flows from Urban Features with Spatial Interaction Models and Neural Networks**To appear in the Proceedings of 2020 IEEE International Conference on Smart Computing (SMARTCOMP 2020) / Yeghikyan, G.; Opolka, F. L.; Nanni, M.; Lepri, B.; Lio, P.. - (2020), pp. 57-64. (Intervento presentato al convegno 6th IEEE International Conference on Smart Computing, SMARTCOMP 2020 tenutosi a Virtual, Bologna) [10.1109/SMARTCOMP50058.2020.00028].
File allegati a questo prodotto
File Dimensione Formato  
Yeghikyan_Learning_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Contatta l'autore
yeghikyan_preprint_Learning_2020.pdf

accesso aperto

Note: DOI 10.1109/SMARTCOMP50058.2020.00028
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 5.93 MB
Formato Adobe PDF
5.93 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1720029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact