The quest for precision in parameter estimation is a fundamental task in different scientific areas. The relevance of this problem thus provided the motivation to develop methods for the application of quantum resources to estimation protocols. Within this context, Bayesian estimation offers a complete framework for optimal quantum metrology techniques, such as adaptive protocols. However, the use of the Bayesian approach requires extensive computational resources, especially in the multiparameter estimations that represent the typical operational scenario for quantum sensors. Hence, the requirement to characterize protocols implementing Bayesian estimations can become a significant challenge. This work focuses on the crucial task of robustly benchmarking the performances of these protocols in both single and multiple-parameter scenarios. By comparing different figures of merits, evidence is provided in favor of using the median of the quadratic error in the estimations in order to mitigate spurious effects due to the numerical discretization of the parameter space, the presence of limited data, and numerical instabilities. These results, providing a robust and reliable characterization of Bayesian protocols, find natural applications to practical problems within the quantum estimation framework.

Benchmarking Bayesian quantum estimation / Cimini, V.; Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F.. - In: QUANTUM SCIENCE AND TECHNOLOGY. - ISSN 2058-9565. - 9:3(2024), pp. 1-14. [10.1088/2058-9565/ad48b3]

Benchmarking Bayesian quantum estimation

Cimini V.
;
Polino E.;Valeri M.;Spagnolo N.;Sciarrino F.
2024

Abstract

The quest for precision in parameter estimation is a fundamental task in different scientific areas. The relevance of this problem thus provided the motivation to develop methods for the application of quantum resources to estimation protocols. Within this context, Bayesian estimation offers a complete framework for optimal quantum metrology techniques, such as adaptive protocols. However, the use of the Bayesian approach requires extensive computational resources, especially in the multiparameter estimations that represent the typical operational scenario for quantum sensors. Hence, the requirement to characterize protocols implementing Bayesian estimations can become a significant challenge. This work focuses on the crucial task of robustly benchmarking the performances of these protocols in both single and multiple-parameter scenarios. By comparing different figures of merits, evidence is provided in favor of using the median of the quadratic error in the estimations in order to mitigate spurious effects due to the numerical discretization of the parameter space, the presence of limited data, and numerical instabilities. These results, providing a robust and reliable characterization of Bayesian protocols, find natural applications to practical problems within the quantum estimation framework.
2024
quantum metrology; adaptive protocols; Bayesian multiparameter estimation
01 Pubblicazione su rivista::01a Articolo in rivista
Benchmarking Bayesian quantum estimation / Cimini, V.; Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F.. - In: QUANTUM SCIENCE AND TECHNOLOGY. - ISSN 2058-9565. - 9:3(2024), pp. 1-14. [10.1088/2058-9565/ad48b3]
File allegati a questo prodotto
File Dimensione Formato  
Cimini_Benchmarking_2024.pdf

accesso aperto

Note: Articolo rivista
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 3.77 MB
Formato Adobe PDF
3.77 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1719727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact